

October 14, 2025

New Antibiotics

Zahra Kassamali Escobar, PharmD

Disclosures

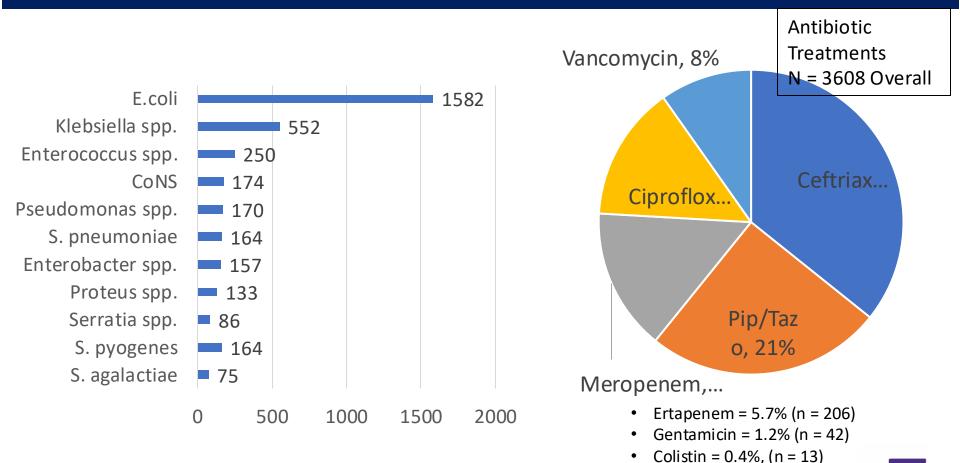
Today's speaker has no financial relationships with an ineligible company relevant to this presentation to disclose.


None of the planners have relevant financial relationship(s) to disclose with ineligible companies whose primary business is producing, marketing, selling, re-selling, or distributing healthcare products used by or on patients

All relevant financial relationships have been mitigated

The Most Common Sources of Bacteremia

Bacteremia Antibiotic Length Actually Needed for Clinical Effectiveness (BALANCE Trial), 7 vs 14 days of antibiotics

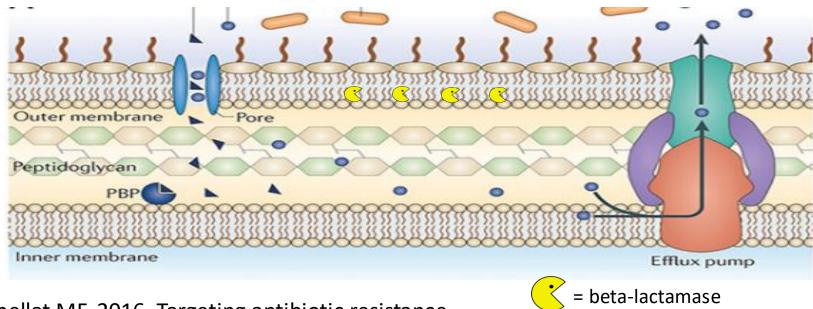


2562 monomicrobial gram-negative bacteria (71.0%) 625 monomicrobial gram-positive bacteria (17.3%)

Epidemiology of Resistance

Why do we always talk about GNs?

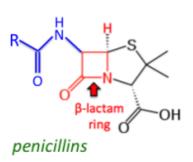
Which of the following letters on a microbiology report would concern you the most?


- AMP-C
- ESBL
- KPC
- NDM
- Letters don't scare me

Multiple Mechanisms of Resistance

Defense = Survival

Gram negative bacteria


Chellat MF. 2016. Targeting antibiotic resistance. Angew Chem Int Ed Engl 55:6600–6626

Slide Credit: Frank Tverdek

Beta-Lactamases <

 MOA - Inactivate beta-lactam antibiotics by splitting the amide bond of the beta-lactam ring.

- Heterogeneity More than 600 betalactamases have been described!!!!
- Genetically encoded by either chromosomal or transferable genes located on plasmids and transposons.
- Expression Can be *suppressed*, *induced*, *derepressed* or constitutively expressed (AMP-Cs)

Slide Credit: Frank Tverdek

New Antimicrobials

Intravenous (IV)

- Aztreonam-avibactam (2/2025)
- Cefepime/enmetazobacta m (2/2024)
- Sulbactam/Durlobactam (5/2023)
- Sulopenem (10/2024)

Oral (PO)

• Gepoticidan (3/2025)

These are NOT new

- Cefiderocol (11/2019)
- Ceftazidime-avibactam (2/2015)
- Ceftolozane-tazobactam (12/2014)
- Meropenem-vaborbactam (8/2017)

Cefepime/enmetazobactam

2.5g IV q8h over 2-4h infusion

 FDA approved: 2024 for adults with complicated urinary tract infection including pyelonephritis

 Gap addressed: carbapenem-sparing option for ESBL, potential use in non-urinary infections

 Current option(s): Meropenem, Imipenemcilastatin, Ertapenem

Comparing Spectra of Activity

	Enterobacterales				Pseudmonas aeruginosa		
	ESBL	AMP-C	Carbapenemases			Garden	Difficult
			Ambler class A (KPC)	Metalo-beta- lactamases (NDM, VIM, IMP)	Ambler Class D (Oxa-48)	variety Pseudomonas	to treat Pseudom onas
Meropenem or Imipenem-cilastatin							
Ertapenem							
Cefepime							
Cefepime- enmetazobactam							
Piperacillin-tazobactam							

Macesic et al. Lancet 2025;405(1044):257.

Cefepime/enmetazobactam

JAMA

QUESTION How does the efficacy of cefepime/enmetazobactam compare with piperacillin/tazobactam for the treatment of complicated urinary tract infection (UTI) or acute pyelonephritis?

CONCLUSION This randomized clinical trial found that cefepime/enmetazobactam, compared with piperacillin/tazobactam, met criteria for noninferiority as well as superiority with respect to the primary efficacy outcome of clinical cure and microbiological eradication.

POPULATION

573 Women 468 Men

Adults >18 years with a clinical diagnosis of complicated UTI or acute pyelonephritis caused by gram-negative urinary pathogens

Mean age: 54.7 years

LOCATIONS

Sites worldwide

INTERVENTION

1041 Patients randomized 1034 Patients analyzed

520

Cefepime/ enmetazobactam

Cefepime, 2 g/enmetazobactam. 0.5 g, given by 2-hour infusion every 8 hours for 7 days

521 Piperacillin/ tazobactam

Piperacillin, 4 g/tazobactam, 0.5 q, given by 2-hour infusion every 8 hours for 7 days

PRIMARY OUTCOMES

Proportion of patients in the primary analysis set who achieved overall treatment success, defined as clinical cure combined with microbiological eradication (<103 CFU/mL in urine) of infection

FINDINGS

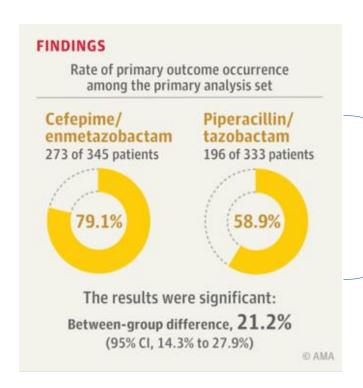

Rate of primary outcome occurrence among the primary analysis set

Cefepime/ enmetazobactam

273 of 345 patients

Piperacillin/ tazobactam 196 of 333 patients

The results were significant:


Between-group difference, 21.2% (95% CI, 14.3% to 27.9%)

@ AMA

Kaye KS, Belley A, Barth P, et al. Effect of cefepime/enmetazobactam vs piperacillin/tazobactam on clinical cure and microbiological eradication in patients with complicated urinary tract infection or acute pyelonephritis: a randomized clinical trial. JAMA. Published October 4, 2022. doi:10.1001/jama.2022.17034

Cefepime/enmetazobactam

What are we going to do with you?

- Place in therapy?
- What does it add? (no anaerobic activity)
- Why do we need to spare carbapenems?

Sulopenem

500mg PO BID + 500mg probenecid PO BID x5 days with food

• FDA approved: 2024 for adult women with uncomplicated urinary tract infection (uUTI) caused by *E.coli, K. pneumoniae, P. mirabilis*

 Gap addressed: PO option for cystitis (uUTI) due to ESBL-producing enterobacterales

 Current option(s^{)1:} Nitrofurantoin, Fosfomycin, 1x dose of IV aminoglycosides

¹Other PO options exist (e.g. fluoroquinolones, sulfamethoxazole/trimethoprim) but are often resistant

Sulopenem, why can't we use it for non-uUTI?

In a multicenter, randomized, comparative, doubleblind, phase 3 trials including 131 sites in 13 countries and 1392 patients. Sulopenem did NOT meet non-inferiority criteria vs. IV ertapenem followed by PO ciprofloxacin for treatment of pyelonephritis or complicated urinary tract infection

The UTI Trial, Sulopenem

Trial Criteria = clinical cure AND microbiological cure

Design	Double-blind phase 3 trial in 131 sites in 13 countries
Treatments	Sulopenem IV followed by Sulopenem/probenecid PO
	VS.
	Ertapenem IV followed by Ciprofloxacin or Amox/Clav PO
Duration	Total: 7-10 days, could be extended to 14 days if bacteremia At least 5 days of IV therapy then can switch to PO if tolerable
Patients	41.4% with complicated UTI 58.6% with acute pyelonephritis

Trial Criteria = clinical cure AND microbiological cure

Noninferiority of sulopenem to ertapenem was to be concluded if the lower bound of the 95% CI was greater than -10%.

Clinical cure: s/sx resolved and no new symptoms

Microbiological cure: bacterial pathogen found at ≥10⁵ CFU/mL in the baseline urine culture was reduced to <10³ CFU/mL in the test of cure urine culture

And clearance of blood cultures (if positive)8

Not Non-Inferior driven by Microbiological response

Trial Criteria = clinical cure AND microbiological cure

Clinical cure: s/sx resolved and no new symptoms

Microbiological cure: <10³ CFU/mL in the test of cure urine culture And clearance of blood cultures (if positive)

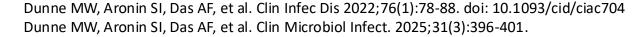
Outcome at Test of Cure Day 21	Sulopenem IV then PO sulopenem N = 444	Ertapenem IV then PO ciprofloxacin or amox/clavulanate N = 440	Difference, 95% Confidence Interval	
Overall response (clinical + microbiological)	301 (67.8)	325 (73.9)	-6.1 (-12.0 to1)	
Clinical response	397 (89.4)	389 (88.4)	1.0 (-3.1 to 5.1)	
Microbiological response Success Failure	316 (71.2) 111 (25.0)	343 (78.0) 74 (16.8)	-6.8 (-12.5 to -1.1)	

But before we feel too confident about the data....we should talk about cIAI

- Phase 3, randomized, double-blind, double-dummy trial: 91 sites in 10 countries
- Sulopenem IV then PO vs. Ertapenem IV then ciprofloxacin¹ + metronidazole PO

Outcome at Test of Cure Clinical success -alive -baseline s/sx resolved -no new symptoms -no new abx or surgery	Sulopenem IV then PO sulopenem N = 249	Ertapenem IV then PO ciprofloxacin + metronidazole or amox/clavulanate N = 266	Difference, 95% Confidence Interval
FDA endpoint, Day 28	213 (85.5)	240/266 (90.2)	-4.7 (-10.3, 1.0)
EMA endpoint, Day 21	216 (86.7)	240/266 (90.2)	-3.5 (-9.0, 2.0)

Sulopenem, PO carbapenem with niche use


Not non-inferior to ertapenem for pyelonephritis

Not non-inferior to ertapenem for complicated intraabdominal infection

Niche use: women with cystitis due to resistant enterobacterales and age/renal function precluding use of other options

10 years: From approval to place in therapy

2014/15

2016-2023

2025

Ceftazidimeavibactam and Ceftolozanetazobactam FDA-approved Enrollment in multicenter, retrospective observational study CACTUS

Ceftolozanetazobactam >
Ceftazidimeavibactam for MDR
P. aeruginosa
infection

When are we going to figure out what to do with cefepime/enmetazobactam?

My best guess: In the year 2025

