

Follow Up Blood Cultures: When are They Needed?

Emily Rosen, MD

Assistant Professor Vaccine and Infectious Disease Division, Fred Hutch Cancer Center Division of Allergy and Infectious Diseases, University of Washington

September 16, 2025

Disclosures

I have no financial relationships relevant to this presentation to disclose.


Outline

1. Brief overview of blood culture diagnostic stewardship

2. Review common indications for follow-up blood cultures... and areas of controversy

3. Blood culture stewardship in patients who are immunocompromised

Diagnostic stewardship advances antimicrobial stewardship

Fred Hutchinson Cancer Center

Importance of blood culture stewardship

Unnecessary blood cultures may lead to:

- Contaminant detection → excess antibiotics
- Misclassification of central lineassociated infections (CLABSI)
- latrogenic anemia
- Increased length of hospital stay
- Increased healthcare costs

Disruptions in Availability of BD BACTEC Blood

Culture Bottles: Current Situation

Updated August 1, 2024

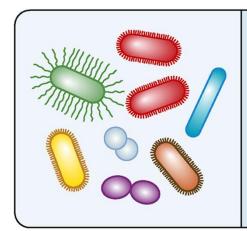
WHAT TO KNOW

- Users may experience delays in supply of BD BACTECTM blood culture media bottles over the coming months.
- Assess your situation and develop plans and options to mitigate the impact of the shortage on patient care.

Definitions for this talk

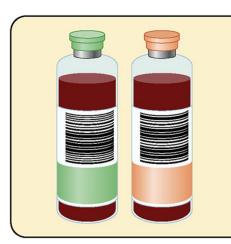
Initial blood cultures – ordered for a new clinical event

Repeat blood cultures* – ordered following negative blood cultures when there is on-going concern for infection



Follow-up blood cultures* – ordered following positive blood cultures to document clearance

Fred Hutchinson Cancer Center


^{*}These terms are often used interchangeably in the literature.

Key considerations when ordering blood cultures

1) Is there an infection that requires blood cultures?

- Yes for severe sepsis/septic shock and syndromes with high or moderate risk of bacteremia
- If the above not present and the triggering event is fever; what are the other clinical findings? What other tests/cultures could be more useful?

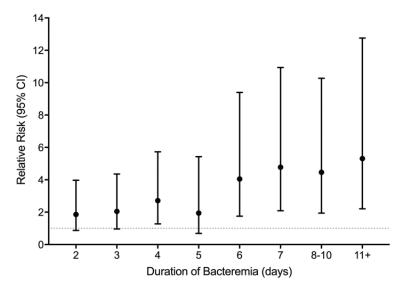
Follow-up 2) Are repeat blood cultures needed? Consider:

- Source control and response to therapy
- Causative pathogen (always yes for *S. aureus*, usually not for Enterobacterales or *S. pneumoniae* if source control and clinical response)
- Type of infection (always yes for endovascular infection)

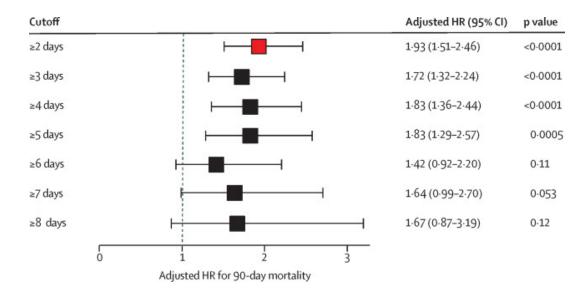
Staph aureus bacteremia: evidence supporting follow-up blood cultures

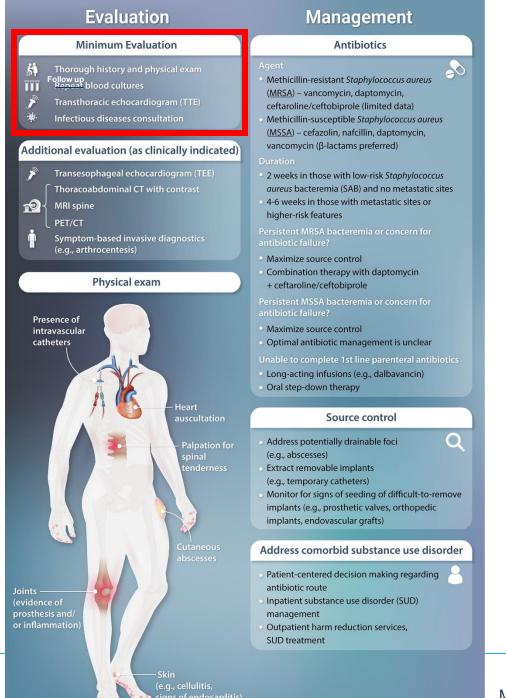
Clinical Infectious Diseases

MAJOR ARTICLE



Defining the Breakpoint Duration of *Staphylococcus aureus*Bacteremia Predictive of Poor Outcomes


Emi Minejima, 12 Nikki Mai, 1 Nancy Bui, 1 Melissa Mert, 3 Wendy J. Mack, 4 Rosemary C. She, 5 Paul Nieberg, 6 Brad Spellberg, 27 and Annie Wong-Beringer 18


Figure 1. Relative risk (95% confidence interval) of mortality by duration of bacteremia (N = 884). The numbers of days of infection at 8–10 and 11+ were collapsed to account for the observed sample sizes.

Defining persistent Staphylococcus aureus bacteraemia: secondary analysis of a prospective cohort study

Richard Kuehl, Laura Morata, Christian Boeing, Isaac Subirana, Harald Seifert, Siegbert Rieg, Winfried V Kern, Hong Bin Kim, Eu Suk Kim,
Chun-Hsing Liao, Robert Tilley, Luis Eduardo Lopez-Cortés, Martin J Llewelyn, Vance G Fowler, Guy Thwaites, José Miguel Cisneros,
Matt Scarborough, Emmanuel Nsutebu, Mercedes Gurgui Ferrer, José L Pérez, Gavin Barlow, Susan Hopkins, Hugo Guillermo Ternavasio-de la Vega,
M Estée Török, Peter Wilson, Achim J Kaasch, Alex Soriano, on behalf of the International Staphylococcus aureus collaboration study group and
the ESCMID Study Group for Bloodstream Infections, Endocarditis and Sepsis*

Follow-up blood cultures are always indicated for *Staph aureus* bacteremia

Follow-up blood cultures are recommended for Candidemia

- 11. Follow-up blood cultures should be performed every day or every other day to establish the time point at which candidemia has been cleared (strong recommendation; low-quality evidence).
- 12. Recommended duration of therapy for candidemia without obvious metastatic complications is for 2 weeks after documented clearance of *Candida* species from the bloodstream and resolution of symptoms attributable to candidemia (strong recommendation; moderate-quality evidence).

Follow-up blood cultures for other gram-positives (i.e. not Staph aureus)

- Data is less robust than for Staph aureus
- Follow-up blood cultures <u>are</u> indicated for:
 - Staph lugdunensis bacteremia (behaves like Staph aureus!)
 - Suspected or confirmed endocarditis / other endovascular infection (e.g. line infection)
 - High risk for endovascular infection (e.g. prosthetic valve, ICD, vascular graft)
 - Inadequate source control and/or lack of clinical improvement
 - Distinguishing blood culture contamination vs infection (sometimes)

MAJOR ARTICLE

Limited Clinical Utility of Follow-up Blood Cultures in Patients With Streptococcal Bacteremia: An Opportunity for Blood Culture Stewardship

Emily A. Siegrist, 12.0 Minkey Wungwattana, 1.0 Leyla Azis, 3 Patricia Stogsdill, 3 Wendy Y. Craig, 4 and Kristina E. Rokas 1

- Retrospective cohort study; patients with Strep bacteremia
 - viridans (33%), pneumoniae (17%), group B (21%), group A (12%), groups C/G (13%)
- 10 / 304 (3.2%) patients had Strep in a follow-up blood culture

Table 2. Presumed Source of Bacteremia, Overall and After Stratification by Follow-Up Blood Culture Result^a

Follow-up Blood Cultu	re Result for <i>Str</i>	eptococcus spp	
Source of Infection	Overall (n = 314)	Negative (n = 304)	Positive (n = 10)
None identified	86 (27.4)	85 (28.0)	1 (10.0)
Skin and skin structure	64 (20.4)	64 (21.1)	0 (0)
Respiratory	48 (15.3)	48 (15.8)	0 (0)
Endocarditis	40 (12.7)	35 (11.5)	5 (50.0)
Discitis/vertebral osteomyelitis	17 (5.4)	14 (4.6)	3 (30.0)
Gastrointestinal	11 (3.5)	11 (3.6)	0 (0)
Meningitis	10 (3.2)	10 (3.3)	0 (0)
Nonvertebral osteomyelitis	9 (2.9)	9 (3.0)	0 (0)
Septic arthritis	8 (2.5)	8 (2.6)	0 (0)
Dental	7 (2.2)	6 (2.0)	1 (10.0)
Epidural abscess	6 (1.9)	4 (1.3)	2 (20.0)
Diabetic foot infection	6 (1.9)	6 (2.0)	0 (0)
UTI	6 (1.9)	6 (2.0)	0 (0)
Prosthetic joint	4 (1.3)	4 (1.3)	0 (0)
Catheter-associated	2 (0.6)	2 (0.7)	0 (0)
ntravascular device	2 (0.6)	2 (0.7)	0 (0)
Other	38 (12.1)	35 (11.5)	3 (30.0)

Abbreviations: UTI, urinary tract infection.

^aPatients could have multiple sources identified. All data are n (%).

MAJOR ARTICLE

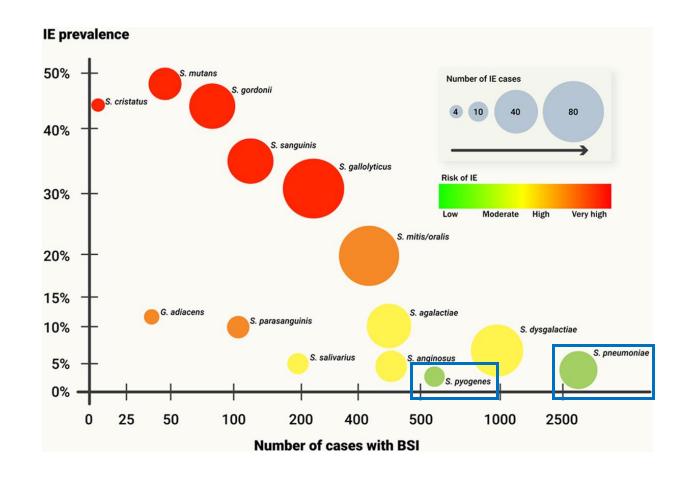
Limited Clinical Utility of Follow-up Blood Cultures in Patients With Streptococcal Bacteremia: An Opportunity for Blood Culture Stewardship

Emily A. Siegrist, 12.0 Minkey Wungwattana, 1.0 Leyla Azis, 3 Patricia Stogsdill, 3 Wendy Y. Craig, 4 and Kristina E. Rokas

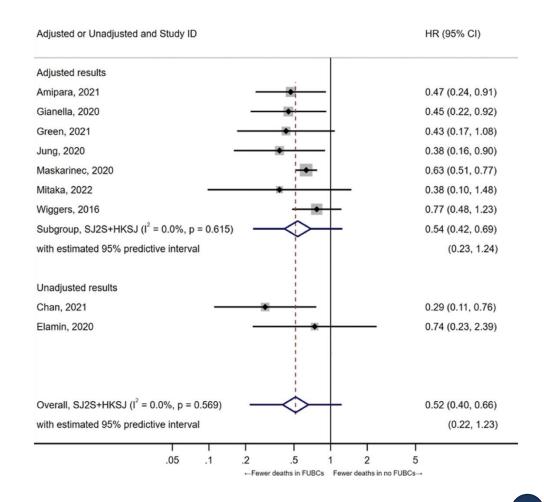
- Retrospective cohort study; patients with Strep bacteremia
 - viridans (33%), pneumoniae (17%), group B (21%), group A (12%), groups C/G (13%)
- 10 / 304 (3.2%) patients had Strep in a follow-up blood culture

Table 2. Presumed Source of Bacteremia, Overall and After Stratification by Follow-Up Blood Culture Result^a

Follow-up Blood Cultu	re Result for Str	eptococcus spp	
Source of Infection	Overall (n = 314)	Negative (n = 304)	Positive (n = 10)
None identified	86 (27.4)	85 (28.0)	1 (10.0)
Skin and skin structure	64 (20.4)	64 (21.1)	0 (0)
Respiratory	48 (15.3)	48 (15.8)	0 (0)
Endocarditis	40 (12.7)	35 (11.5)	5 (50.0)
Discitis/vertebral osteomyelitis	17 (5.4)	14 (4.6)	3 (30.0)
Gastrointestinal	11 (3.5)	11 (3.6)	0 (0)
Meningitis	10 (3.2)	10 (3.3)	0 (0)
Nonvertebral osteomyelitis	9 (2.9)	9 (3.0)	0 (0)
Septic arthritis	8 (2.5)	8 (2.6)	0 (0)
Dental	7 (2.2)	6 (2.0)	1 (10.0)
Epidural abscess	6 (1.9)	4 (1.3)	2 (20.0)
Diabetic foot infection	6 (1.9)	6 (2.0)	0 (0)
UTI	6 (1.9)	6 (2.0)	0 (0)
Prosthetic joint	4 (1.3)	4 (1.3)	0 (0)
Catheter-associated	2 (0.6)	2 (0.7)	0 (0)
Intravascular device	2 (0.6)	2 (0.7)	0 (0)
Other	38 (12.1)	35 (11.5)	3 (30.0)



^aPatients could have multiple sources identified. All data are n (%).


Follow-up blood cultures in Strep bacteremia

- Data are scarce
- Yield of follow-up blood cultures varies by type of infection and Strep species

Utility of follow-up blood cultures in gram-negative rod (GNR) bacteremia is unclear

- Meta-analysis of 9 retrospective studies: follow-up blood cultures associated with lower mortality...but study had significant limitations
- Overall uncertain benefit of follow-up blood cultures for GNR bacteremia
- Need for prospective studies

Follow-up blood cultures for GNR bacteremia associated with ↑ LOS and ↑ antibiotic duration

Infection Control & Hospital Epidemiology (2023), 44, 474–479 doi:10.1017/ice.2022.110

Original Article

Association between follow-up blood cultures for gram-negative bacilli bacteremia and length of hospital stay and duration of antibiotic treatment: A propensity score-matched cohort study

Hayato Mitaka MD^{1,2} , Shigeki Fujitani MD, PhD², Toshiki Kuno MD, PhD³ and David C. Perlman MD⁴

Table 3. Outcomes of Patients with Gram-Negative Bacilli Bacteremia With and Without Follow-up Blood Cultures (FUBCs) Performed

	Propensity Score-Matched Cohort			
	With FUBC	Without FUBC		
Outcome	(N = 87)	(N = 87)	OR (95% CI)	P Value
Length of stay, median d (IQR)	9 (6–14)	7 (4.5–10.5)		.02
Duration of inpatient antibiotic treatment, median d (IQR)	8 (5.5–13)	6 (4–10)		.01
In-hospital mortality (%)	4.6	11.5	0.36 (0.12-1.14)	0.16

Note. OR, odds ratio; CI, confidence interval; IQR, interquartile range.

Which patients are more likely to benefit from followup blood cultures for GNR bacteremia?

Open Forum Infectious Diseases

Risk Factors for Positive Follow-Up Blood Cultures in Gram-Negative Bacilli Bacteremia: Implications for Selecting Who Needs Follow-Up Blood Cultures

Hayato Mitaka,^{1,0} Tessa Gomez,² Young Im Lee,³ and David C. Perlman²

Table 2. Factors Independently Associated With Positive Follow-Up Blood Culture for Gram-Negative Bacilli Bacteremia^a

Variable	Adjusted OR (95% CI)	<i>P</i> Value
ESRD on hemodialysis	2.95 (1.14–7.61)	.025
Intravascular device	2.52 (1.02-6.28)	.046
ESBL or carbapenemase-producing organism	3.07 (1.22–7.76)	.018

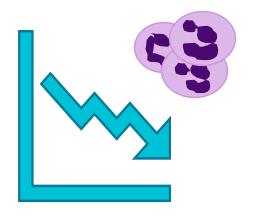
Table 3. The Yield of Follow-Up Blood Cultures^a

	Total	Positive FUBC	The Yield of FUBC (%) (95% CI)	<i>P</i> Value
All patients with FUBC	306	28	9.2 (6.2–13.0)	-
Patients with ≥1 risk factors	155	23	14.8 (9.7–21.4)	_
Patients with no risk factors	151	5	3.3 (1.1–7.6)	.001

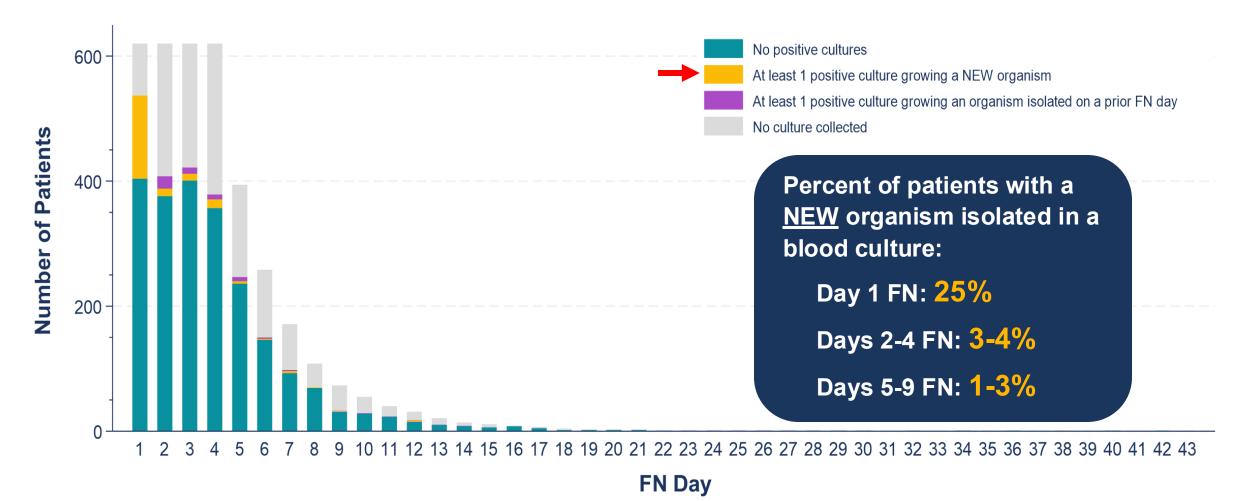
Follow-up blood cultures for GNR bacteremia

- Area of controversy; no universal consensus
- Definitely obtain follow-up blood cultures for GNR bacteremia if:
 - Suspected or confirmed endocarditis/endovascular infection
 - Inadequate source control
 - Lack of clinical improvement
- Need additional studies to define which patients are most likely to benefit from follow-up blood cultures and if specific GN organisms should prompt follow-up blood cultures

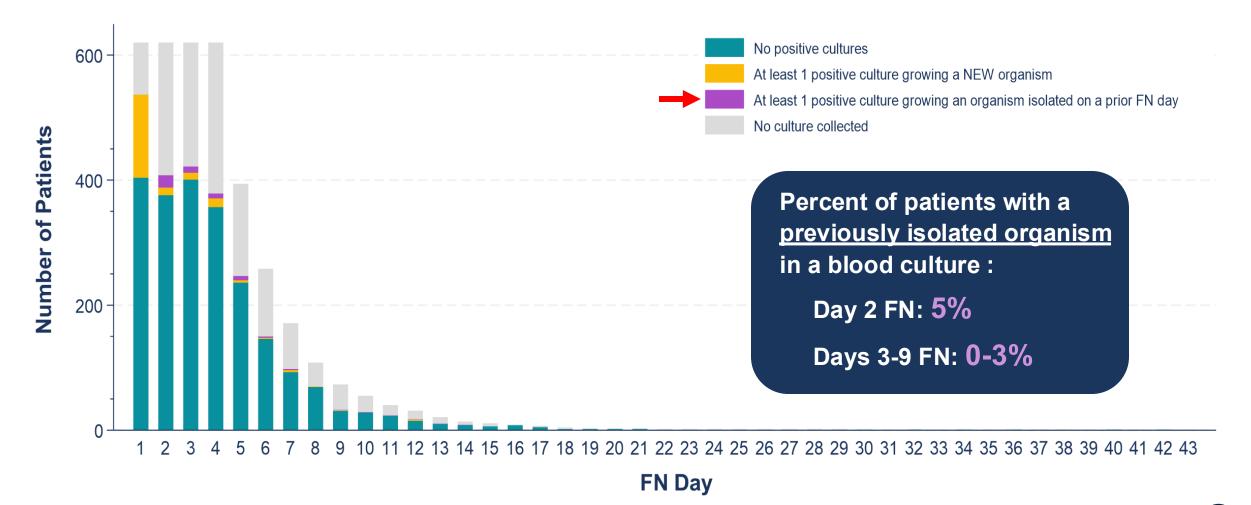
Follow-up & repeat blood cultures for patients who are immunocompromised


- Data are limited
- Clinical practice is variable
- Diagnostic + antimicrobial stewardship is increasingly important for these patients

Febrile neutropenia (FN) is associated with high blood culture utilization


- Most common in patients with hematologic malignancies or those receiving chemotherapy
- Bloodstream infection identified in only 10-25% of FN episodes
- IDSA guidelines and retrospective studies note low yield of repeat blood cultures beyond FN day 3 in clinically stable patients

Timing of Positive Blood Cultures in Persistent FN


N= 620 patients with persistent FN (>3 days) from March 2021 – June 2024

Median FN duration: 5 days (IQR 4-7)
Median blood culture bottles per FN episode: 12 (IQR 8-18)

Timing of Positive Blood Cultures in Persistent FN

N= 620 patients with persistent FN (>3 days) from March 2021 – June 2024

Median FN duration: 5 days (IQR 4-7)
Median blood culture bottles per FN episode: 12 (IQR 8-18)

Summary and Take-Home Points

- Follow-up blood cultures are high-yield / recommended for:
 - Staph aureus & Staph lugdunensis bacteremia
 - Candidemia
 - Suspected or confirmed endocarditis or endovascular infection
 - Lack of clinical improvement and/or poor source control

- Role of follow-up blood cultures for GNR bacteremia is not well defined
- Opportunities for blood culture stewardship also exist for patients who are immunocompromised
- Clinical judgement is important in deciding when to send follow-up blood cultures

Teaching Peer Evaluation for Dr. Emily Rosen

