

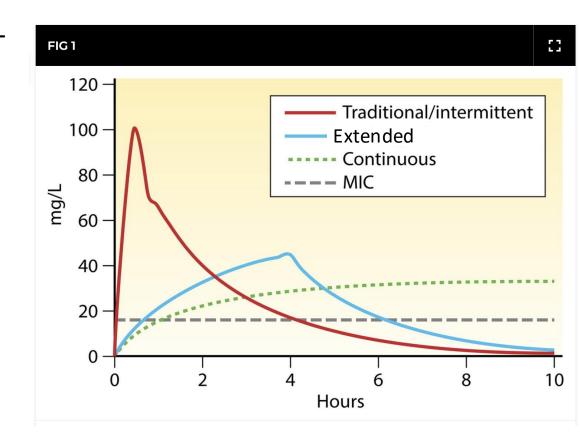
April 1, 2025

Agenda

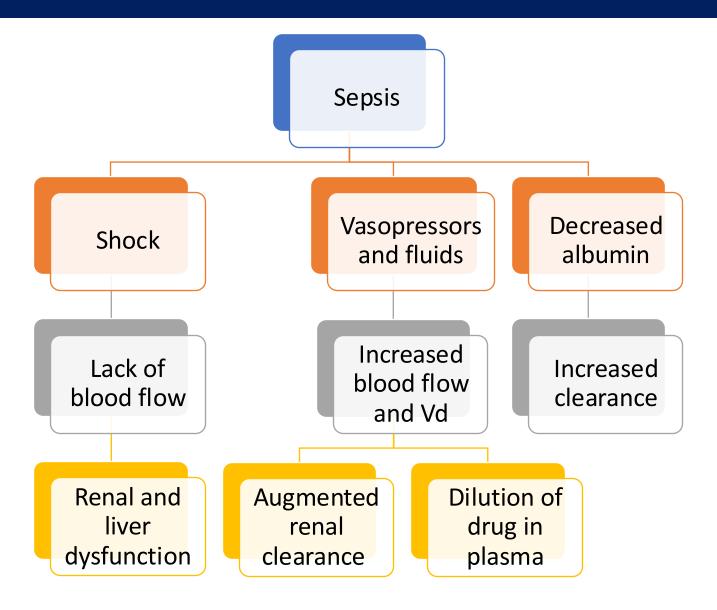
- Sydney Kruse, PharmD: Time Matters: Prolonged Infusion Strategies for Beta-Lactam Antibiotics
- Case Discussions
- Open Discussion

Lecture Objectives

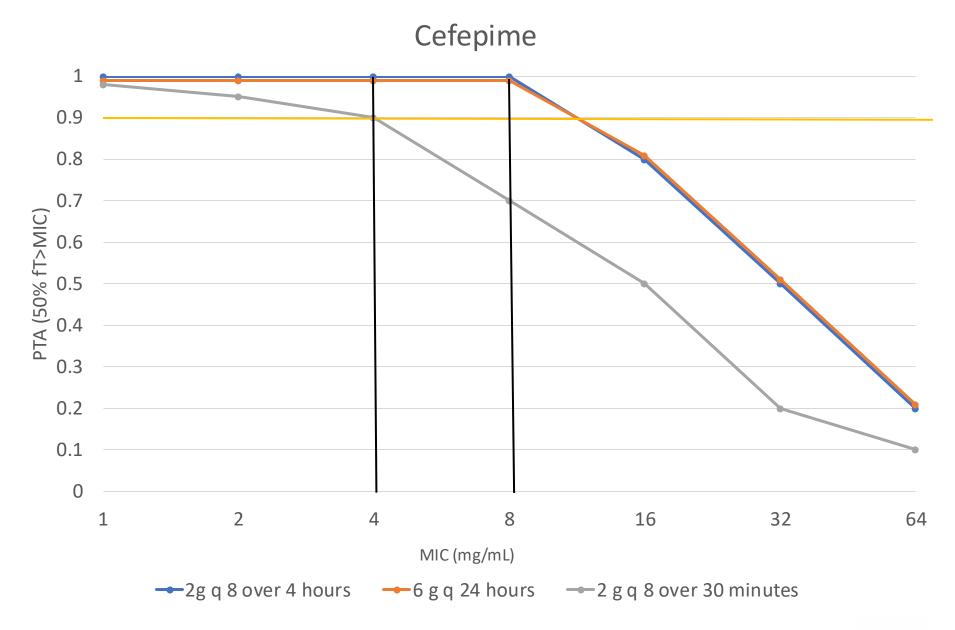
 Explain the theory of prolonged infusion betalactam antibiotics

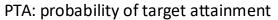

 Evaluate the BLING III trial and understand how it fits into the broader literature surrounding prolonged infusions

• Illustrate challenges and considerations for implementation of a prolonged infusion protocol


Prolonged Infusion of Beta-Lactam Antibiotics Optimizes PK/PD

- Beta-lactams exhibit timedependent killing of microorganisms (fT>MIC)
 - PK/PD Target is ~50%fT> MIC
- Maximal killing occurs at consistent free antibiotic concentrations 4-5X above the MIC





Changes in PK/PD in Critically III Patients with Sepsis

BLING III Trial

The BLING III Randomized Clinical Trial

Purpose: To evaluate CI vs II β -lactam administration in the critically ill

Methods: International, open-label, randomized clinical trial of adult ICU patients with a documented site or strong suspicion of infection and organ dysfunction

Intervention: Cl vs II piperacillin/tazobactam or meropenem

Primary Outcome: All-cause mortality at 90 days

Baseline Characteristics

	Continuous Infusion (n = 3498)	Intermittent Infusion (n = 3533)		
Age, Mean SD, y	59.3 (16.4)	59.6 (16.1)		
Sex, Male, no. (%)	2308 (66)	2300 (65.1)		
APACHE II score ± SD	19.6 ± 7.6	19.5 ± 7.4		
Inotropes/vasopressors in the 24 h prior to randomization, no./total (%)	2481/3496 (71.0)	2482/3532 (70.3)		
Pulmonary infection, no./total (%)	2062/3494 (59.0)	2119/3532 (60.0)		
Piperacillin/tazobactam at eligibility, no. (%)	2739 (78.3)	2766 (78.3)		

Results

Outcome	Continuous infusion (n = 3498)	Intermittent infusion (n = 3533)	Absolute difference (%)					
Primary outcome								
All-cause mortality at day 90, no./total (%)	864/3474 (24.9)	939/3502 (26.8)	-1.9 (-4.9 to 1.1)					
Adju	-2.2 (-5.5 to 1.1)							
	Secondary outcor	nes						
Clinical cure at day 14, no./total (%)	1930/3467 (55.7)	1744/3491 (50.0)	5.7 (2.4 to 9.1)					
New acquisition, colonization, or infection with an MRO or C. difficile, No./total (%)	253/3498 (7.2)	266/3522 (7.5)	-0.3 (-1.9 to 1.4)					
Adverse	events: 10 (0.3%) C	l vs 6 (0.2%) II						

Number Needed to Treat

 Number Need to Treat (NNT) is a way to assess the benefit of treatment

- NNT = 1/absolute risk reduction (ARR)
 - ARR of mortality from BLING III was 2% (0.02)
- 1/0.02 = 50

 50 patients need to be treated with a continuous infusion to avoid 1 death

Limitations

Limitations:

- Most patient on piperacillin/tazobactam
- Caution to generalizing to places with higher antimicrobial resistance

Key take aways:

- The CI group had numerically lower mortality rate and improved clinical cure when compared to II
- Not statically significant but may have clinical significance based on NNT of 50 patients.

2024 Systematic Review and Meta Analysis

Figure 1. All-Cause 90-Day Mortality for the Comparison Between Prolonged Infusions of β -Lactam Antibiotics vs Intermittent Infusions

Study	Dead (prolonged)	Alive (prolonged)	Dead (intermittent)	Alive (intermittent)	Absolute difference (95% CI)	Risk ratio (95% CI)	Favors prolonged infusion	Favors intermittent infusion	Weight %
Georges et al, ³³ 2005	3	21	3	20	-0.01 (-0.20 to 0.19)	0.96 (0.21 to 4.27)		-	0.8
Rafati et al, ³⁴ 2006	5	15	6	14	-0.05 (-0.33 to 0.23)	0.83 (0.30 to 2.29)		├	1.6
Roberts et al, ³⁵ 2007	3	26	0	28	0.10 (-0.02 to 0.22)	6.77 (0.37 to 125.32)		├	0.2
Roberts et al, ³⁶ 2009	2	3	0	5	0.33 (-0.12 to 0.79)	5.00 (0.30 to 83.69)		├	0.2
Chytra et al, ³⁸ 2012	21	99	28	92	-0.06 (-0.16 to 0.04)	0.75 (0.45 to 1.24)		 	5.1
Dulhunty et al, ³⁹ 2013	3	27	6	24	-0.10 (-0.28 to 0.08)	0.50 (0.14 to 1.82)			1.1
Dulhunty et al, ⁴⁰ 2015	54	156	60	158	-0.02 (-0.10 to 0.07)	0.93 (0.68 to 1.28)			9.8
Jamal et al, ⁴¹ 2015	4	4	5	3	-0.12 (-0.61 to 0.36)	0.80 (0.33 to 1.92)			2.1
Jamal et al, ⁴² 2015	5	3	8	0	-0.33 (-0.69 to 0.02)	0.65 (0.38 to 1.12)		+	4.6
Abdul-Aziz et al, ⁴³ 2016	18	52	26	44	-0.11 (-0.27 to 0.04)	0.69 (0.42 to 1.14)		 	5.2
Zhao et al, ⁴⁴ 2017	7	18	8	17	-0.04 (-0.29 to 0.21)	0.88 (0.37 to 2.05)			2.2
Khan and Omar, ²² 2023	12	40	20	29	-0.18 (-0.36 to 0.00)	0.57 (0.31 to 1.03)		1	4.0
Mirjalili et al, ⁴⁵ 2023	14	54	25	43	-0.16 (-0.31 to -0.01)	0.56 (0.32 to 0.98)			4.4
Monti et al, ¹⁴ 2023	127	176	127	177	0.00 (-0.08 to 0.08)	1.00 (0.83 to 1.21)	-	—	17.6
Saad et al, ⁴⁶ 2024	8	22	12	18	-0.13 (-0.37 to 0.10)	0.67 (0.32 to 1.39)			2.8
Álvarez-Moreno et al, ⁴⁷ 2024	2	10	2	11	0.01 (-0.28 to 0.30)	1.08 (0.18 to 6.53)	-	 	0.6
Dulhunty et al, ¹⁵ 2024	864	2610	939	2568	-0.02 (-0.04 to 0.00)	0.93 (0.86 to 1.01)	-		37.4
Bayesian									
Vague priors ^a					-0.03 (-0.08 to 0.00)	0.86 (0.72 to 0.98)			
Semi-informative priors ^a					-0.04 (-0.10 to 0.01)	0.86 (0.73 to 0.98)			
Frequentist									
Hartung-Knapp-Sidik-Jonkma	ın				-0.05 (-0.10 to 0.00)	0.80 (0.67 to 0.94)			
DerSimonian-Laird					-0.03 (-0.07 to 0.00)	0.91 (0.85 to 0.97)	♦		
						L		i 2 3	

The black boxes represent point estimates, and the areas of the boxes are proportional to the weight of the studies. The weights displayed are based on bayesian analysis with vague priors. The whiskers represent Cls. Width of the diamonds represents the trials' pooled estimate Cl, and the middle point represents the point estimates.

^aCredible intervals are presented for bayesian analysis.

Current and Future Operations

How Does UW Medicine Administer Beta-Lactams?

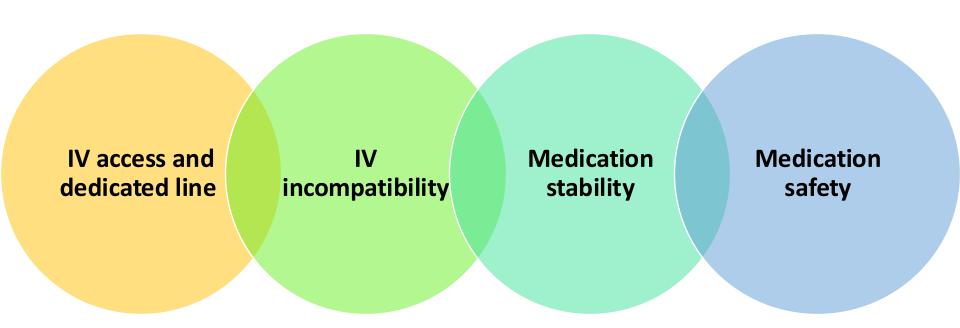
Piperacillin/tazobact am is administered as an extended infusion over 4 hours

Cefepime and meropenem are administered over 30 minutes

Newer BL/BLIs are administered as EI via MDRO order panel

On the Horizon at UW Medicine

Prolonged infusion are recommended by the IDSA and international recommendations endorsed by ACCP, BSAC, CFF, ESCMID, IDSA, SCCM, and SIDP


Implementing more routine use of extended infusions for severe pseudomonal infections

Includes bacteremia, pneumonia, CNS infection, intraabdominal, and complicated skin and soft tissue infection

Potential Issues Associated with Prolonged Infusion Beta-Lactam Antibiotics

Considerations for Implementation of Prolonged Infusion Beta-Lactam Protocol

Severity of illness of patients Local resistance patterns Hospital resources Cost

Prolonged Infusion Beta-Lactam Conclusions

Prolonged infusions are safe, effective, and optimize PK/PD of beta-lactam antibiotics

Logistical challenges exist with prolonged infusions

Individual institutional factors play a role in implementation of a prolonged infusion strategy

April 1, 2025

Agenda

- Sydney Kruse, PharmD: Time Matters: Prolonged Infusion Strategies for Beta-Lactam Antibiotics
- Case Discussions
- Open Discussion

