

July 9, 2024

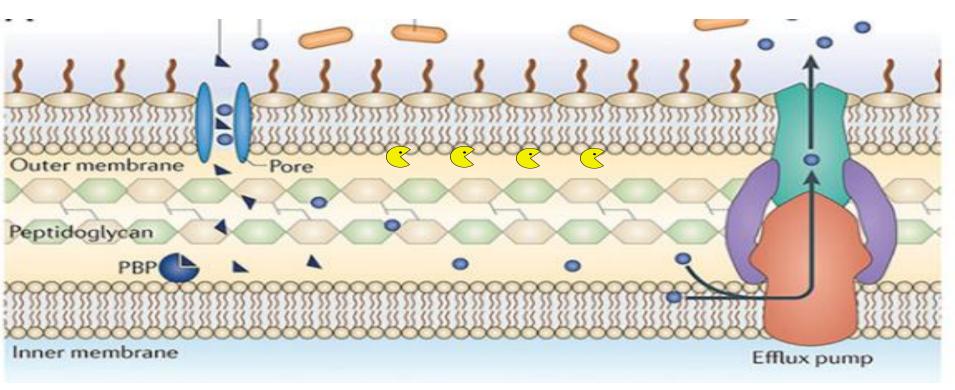
Applied Microbiology- ESBLs

Zahra Kassamali Escobar, PharmD

EUCAST vs. CLSI: If it's an ESBL E.coli in Europe, is it an ESBL E.coli in the US?

Agenda

- What is an ESBL organism
- What does this mean for treatment (PK/PD 101, the fastest review)
- Interpreting MICs with an accent (European vs. US guidance)



What is an ESBL organism

Multiple Mechanisms of Resistance Defense = Survival

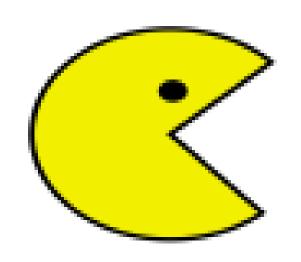
Gram negative bacteria

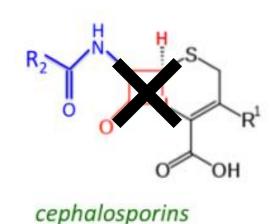
Chellat MF. 2016. Targeting antibioticresistance. Angew Chem Int Ed Engl 55:6600–6626

Slide Credit: Frank Tverdek

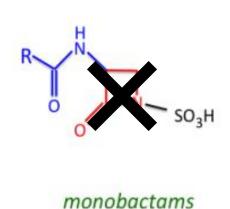
citations

Beta-Lactamases


- MOA Inactivate beta-lactam antibiotics by splitting the amide bond of the beta-lactam ring.
- Heterogeneity More than 600 beta-lactamases have been described!!!!
- Genetically encoded by either chromosomal or transferable genes located on plasmids and transposons.
- **Expression** Can be *suppressed*, *induced*, *derepressed* or constitutively expressed (AMP-Cs)


Slide Credit: Frank Tverdek

What is an ESBL?


Extended Spectrum Beta Lactamase

What does this mean for treatment?

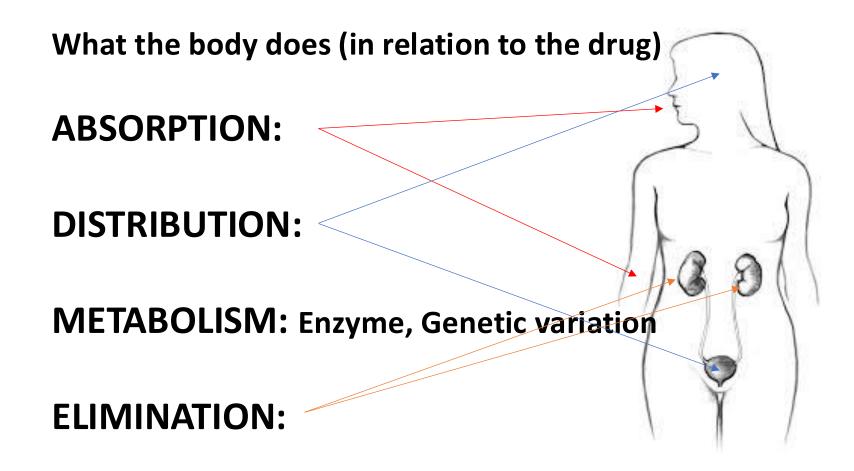
Specimen: Blood

Drug	MIC	Interpretation
1 gen Ceph (cefazolin)	≥ 8	R
2 gen Ceph (cefoxitin)	4	S
3 gen Ceph (ceftriaxone)	≥ 4	R
4 gen Ceph (cefepime)	≥ 16	R
Pip-tazo	16/2	S
Carbapenem	0.5	S
Aztreonam	≥ 16	R

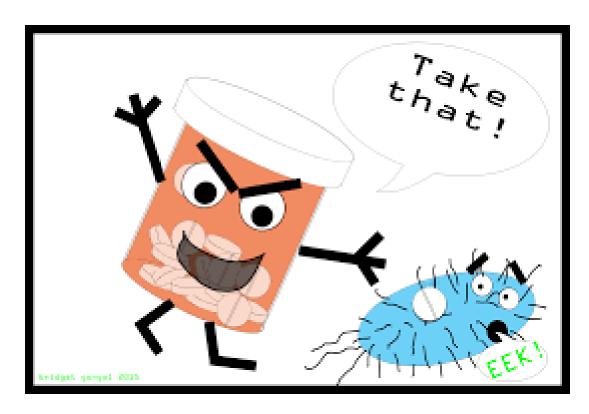
Would you treat this bacteremia with piperacillin/tazobactam?

Specimen: Blood

Drug	MIC	Interpretation
1 gen Ceph (cefazolin)	≥ 8	R
2 gen Ceph (cefoxitin)	4	S
3 gen Ceph (ceftriaxone)	≥ 4	R
4 gen Ceph (cefepime)	≥ 16	R
Pip-tazo	16/2	S
Carbapenem	0.5	S
Aztreonam	≥ 16	R

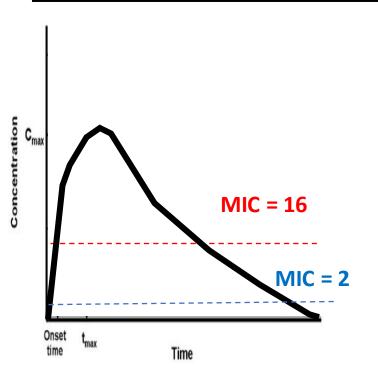

- Yes
- No
- Maybe

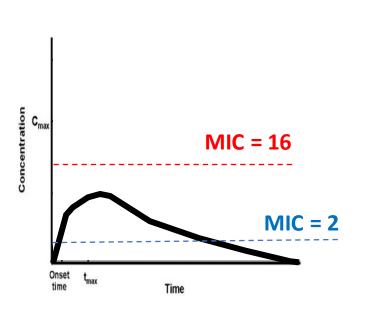
What does this mean for treatment (PK/PD 101)


Defining Terms: Pharmacokinetics

Defining Terms: Pharmacodynamics

What the drug does (in relation to the body)

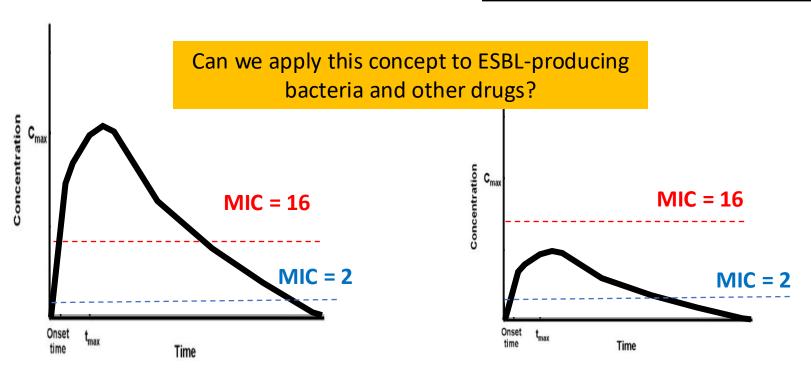

Efficacy of Antibiotics is directly related to how we dose them



Urine is a unique compartment: Cefazolin concentration in blood vs. urine

URINE Concentrations of Cefazolin

BLOOD Concentrations of Cefazolin



Urine is a unique compartment: Cefazolin concentration in blood vs. urine

BLOOD Concentrations of Cefazolin

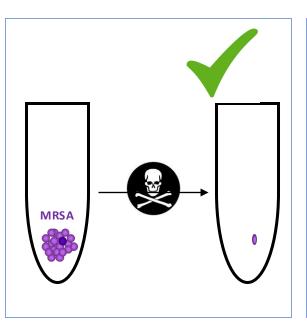
Interpreting MICs

Clinical Question

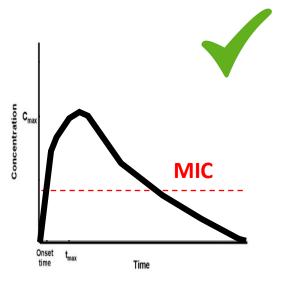
- Pivmecillinam FDA approved for treatment of uncomplicated UTIs in women in the US.
- Approved dose 200mg PO TID x 3-7 days.

	Clinical Study (done in Norway)	Norway	USA
Dose	200mg TID	400mg TID	200mg TID
Comments about ESBL	Associated with clinical failure for pts with ESBLs	Recommended for ESBL E.coli	Displays <i>in-vitro</i> activity against ESBL E. coli
Microbiology guidance	EUCAST	EUCAST	CLSI

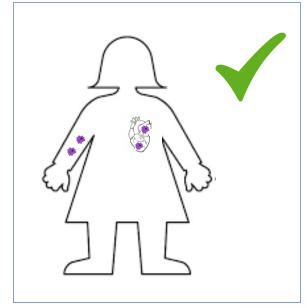
If it's an ESBL E.coli in Europe, is it an ESBL E.coli in the US?



MIC ≠ Breakpoint


The Breakpoint:

Breakpoint setting integrates knowledge of **wild-type MICs**, assessment of antimicrobial **pharmacokinetics and pharmacodynamics**, and studies of **clinical outcomes** when the antimicrobial is used


MIC

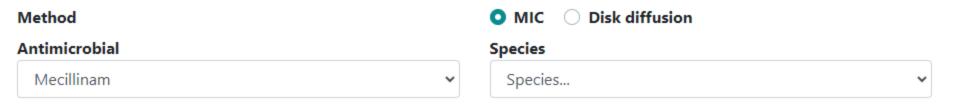
PK/PD

Clinical Outcomes

What does CLSI say?

	Disk	Zone I	Diamete	ategorie r Breakp vhole mi	ooints,		MIC Brea	ategorie kpoints mL		
Antimicrobial Agent		S	SDD	ı	R	S	SDD	- 1	R	Comments
PENICILLINS										
Mecillinam* (U) ^b	10 μg	≥ 15	-	12–14^	≤11	≤8	-	16^	≥32	(8) Report only on <i>E. coli.</i>

- Mecillinam = Active drug for Pivmecillinam (prodrug)
- Report for *E.coli* in Urine ONLY
- Susceptible = MIC ≤ 8



What does EUCAST say?

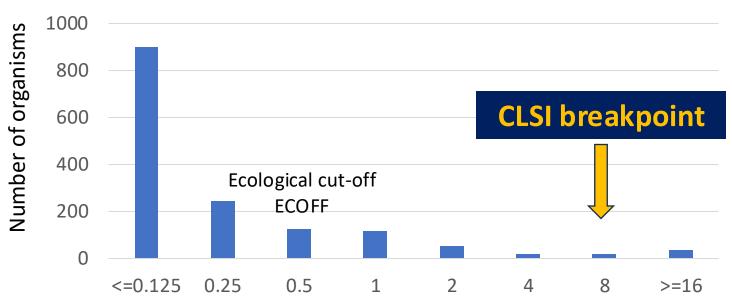
Antimicrobial wild type distributions of microorganisms

Mic distributions include collated data from multiple sources, geographical areas and time periods and can never be used to infer rates of resistance

Search database

MIC distributions for Mecillinam, 2024-07-08
Antimicrobial: Mecillinam (Method: MIC)

Minimum inhibitory concentration


	S	0.002	0.004	0.008	0.016	0.03	0.06	0.125	0.25	0.5	1	2	4	8	16	32	64	128	256	512	Distributions	Observations	(T)ECOFF	Confidence interval
Citrobacter freundii	Ε	0	0	0	0	0	2	22	11	3	2	0	1	0	0	0	0	0	0	0	1	41	ID	
Citrobacter koseri	<u>.</u>	0	0	0	1	1	11	20	9	3	1	0	0	0	0	0	0	0	1	2	1	49	ID	
Enterobacter cloacae	\subseteq	0	0	0	0	0	2	4	17	18	3	1	0	1	0	0	0	0	0	0	1	46	ID	
Escherichia coli	ga	0	0	0	0	7	225	667	241	125	115	51	18	17	5	5	7	6	8	5	4	1502	(0.5)	0.25 - 0.5
Klebsiella aerogenes	<u> </u>	0	0	0	0	0	0	3	16	26	12	2	1	1	0	0	0	0	0	4	1	65	ID	

of observations/organisms

Ecological cut-off (ECOFF)

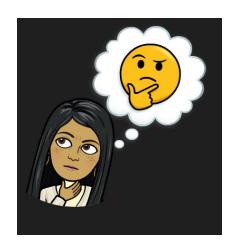
What does EUCAST say?

Minimum inhibitory concentration (MIC)

MIC distributions for Mecillinam, 2024-07-08
Antimicrobial: Mecillinam (Method: MIC)

	0.002	0.004	0.008	0.016	0.03	0.06	0.125	0.25	0.5	1	2	4	8	16	32	64	128	256	512	Distributions	Observations	(T)ECOFF	Confidence interval
Citrobacter freundii	0	0	0	0	0	2	22	11	3	2	0	1	0	0	0	0	0	0	0	1	41	ID	
Citrobacter koseri	0	0	0	1	1	11	20	9	3	1	0	0	0	0	0	0	0	1	2	1	49	ID	
Enterobacter cloacae	0	0	0	0	0	2	4	17	18	3	1	0	1	0	0	0	0	0	0	1	46	ID	
mic aucast or	rσ										51	18	17	5	5	7	6	8	5	4	1502	(0.5)	0.25 - 0.5
mic.eucast.o	g										2	1	1	0	0	0	0	0	4	1	65	ID	
																							1/

Pivmecillinam for ESBL E.coli UTI


		SBL = 88	Non- N =	P-value	
Dose selection	200mg TID	400mg TID	200mg TID	400mg TID	
	42.5%	68.5%	65.8%	34.2%	<0.01
Duration of Symptoms	5 days		3 days		<0.01
Persistent symptoms > 2 weeks after treatment	36.5%		15.3%	<0.01	
2 nd Antibiotic prescription	34.1%		13.9%		<0.01
Persistent bacteriuria	18.5% (15/8	31)	9.0% (6/67	0.1	

For patients treated with 400 mg of pivmecillinam given three times daily, there was no significant difference in the risk of treatment failure for the ESBL cases or the non-ESBL controls regardless of treatment duration

Can we use Pivmecillinam for ESBL E.coli UTI?

YES	NO							
Women	Men							
Cystitis, uncomplicated	Pyelonephritis							
400mg TID	Prostatitis							
	Complicated anatomy							
	2 00mg TID							

ZKE's take: Yes, we can use pivmecillinam but FIRST:

- -adjudicate ASB vs. UTI
- -attempt nitrofurantoin
- -find out how much it costs

Summary

ESBL E.coli

-Challenging pathogen for infections because of broad inactivation of *most* beta-lactam antibiotics

PK/PD

-High urinary concentrations allow for some antibiotics to overcome resistance (usually determined for bloodstream infections)

Application: Pivmecillinam

- -Susceptibility breakpoints in Europe and US are consistent (although US breakpoint is on the high end for *E.coli*)
- -Dose matters- better outcomes for ESBL with higher than FDAapproved dose = 400mg TID

- The question: EUCAST vs. CLSI if it's an ESBL E. coli in Europe, is it an ESBL E. coli in the US? The background:
 - As you may have heard, pivmecillinam was given the FDA green light for treatment of uncomplicated UTIs in women in the US. The approved dose is 185mg (equal to 200mg of pivmecillinam hydrochloride) PO TID x 3-7 days. The package insert states that it has displayed in-vitro activity against ESBL E. coli; however, the reality turns out to be a bit more complicated. There are data from Norway showing an association with 200mg TID dosing for 5 days or less and clinical failure in patients with E. coli that are classified as ESBL per EUCAST. Moreover, Norway's own country-wide guidelines recommend 400mg TID x 5 days specifically for ESBL E. coli (this dosing sadly not approved here in the US). This has led me to wonder about EUCAST vs. CLSI and if these Norway data can inform US usage of the approved dosing for our own ESBLs.
- The study, in case it helps: J Antimicrob Chemother 2018; 73: 2503–2509 doi:10.1093/jac/dky230.

What does this mean for treatment?

MOA	ESBL					
Location	Plasmid					
Inducible	NO					
Bacteria	E.coli, Klebsiella spp, Proteus mirabilis	Concentration (MIC) is				
1 gen Ceph (cefazolin)	R	high				
2 gen Ceph (cefoxitin)	S					
3 gen Ceph (ceftriaxone)	R					
4 gen Ceph (cefepime)	R/S					
Pip-tazo	S	More drug needed to overcome all the				
Carbapenem	S	ESBLs the bacteria are				
Aztreonam	R	producing				