

IDWeek Highlights: Antibacterials and Antifungals

November 11th, 2020

IDSA non-TB Mycobacterial Guideline Update

Mostly clarification of drug regimens:

- Macrolides continue to be cornerstone to therapy for MAC; azithro 250mg ~clarithro
- Intermittent vs. Daily Therapy?
 - Cavitary disease -> Daily
 - Non-cavitary -> Intermittent
- Toxicity counseling important
 - Don't wait until next visit for visual acuity, hearing issues!
- Amikacin resistance marker for poor outcomes
- Liposomal amikacin (Arikayce) inhaled only studied in refractory cases so far

Clinical Infectious Diseases

IDSA FEATURES

Treatment of Nontuberculous Mycobacterial Pulmonary Disease: An Official ATS/ERS/ESCMID/IDSA Clinical Practice Guideline

Charles L. Daley, ^{1,2} Jonathan M. Iaccarino, ³ Christoph Lange, ^{5,5,2,2} Emmanuelle Cambau, ⁵ Richard J. Wallace, Jr, ⁵ Claire Andrejak, ^{5,1} Erik C. Böttger, ¹² Jan Brzek, ¹³ Buvit E. Griffth, ¹¹ Lorenzo Guglielmetti, ¹⁵ Gwen A. Hultt, ¹⁵ Shandra L. Knight, ¹⁸ Philip Leitman, ¹⁷ Theodore K. Marras, ¹⁸ Kenneth N. Olivier, ⁸ Miguel Santin, ²³ Jason E. Studt, ² Enrico Tortoli, ² Jakko van Ingen, ²⁰ Dirk Wagner, ²⁴ and Kevin L. Winthrop²

Drug	Adverse Reactions	Monitoring	
Azithromycin	Gastrointestinal	Clinical monitoring	
	Tinnitus/hearing loss	Audiogram	
	Hepatotoxicity	Liver function tests	
	Prolonged QTc	ECG (QTc)	
Clarithromycin	Gastrointestinal	Clinical monitoring	
	Tinnitus/hearing loss	Audiogram	
	Hepatotoxicity	Liver function tests	
	Prolonged QTc	ECG (QTc)	
Clofazimine	Tanning of skin and dry- ness	Clinical monitoring	
	Hepatotoxicity	Liver function tests	
	Prolonged QTc	ECG (QTc)	
Doxycycline	GI upset	Clinical monitoring	
	Photosensitivity	Clinical monitoring	
	Tinnitus/vertigo	Clinical monitoring	
Ethambutol	Ocular toxicity	Visual acuity and color dis- crimination	
	Neuropathy	Clinical monitoring	
Isoniazid	Hepatitis	Liver function tests	
	Peripheral neuropathy	Clinical monitoring	
Linezolid	Peripheral neuropathy	Clinical monitoring	
	Optic neuritis	Visual acuity and color discrimination	

Daley CL et.al. . Clin Infect Dis. 2020;71(4):e1-e36

IDSA C. Difficile Update

Last Update in 2018 occurred just as Fidaxomicin and Bezlotuxumab being approved

- Fidaxomicin associated with reduced CDI recurrence, especially in some higher-risk subgroups
- Bezlotuxumab, as adjunctive, associated with decreased CDI recurrence

Upcoming update will carve out indications for these drugs

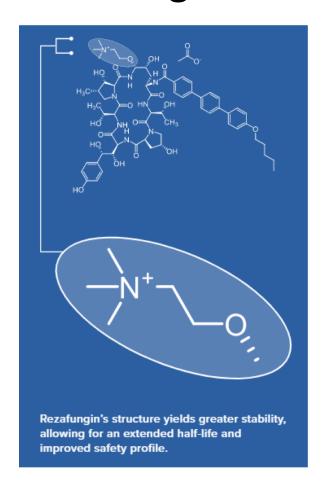
Clinical Infectious Diseases

IDSA GUIDELINE

Clinical Practice Guidelines for *Clostridium difficile* Infection in Adults and Children: 2017 Update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA)

L. Clifford McDonald, Dale N. Gerding, Stuart Johnson, Johnan S. Bakken, Karen C. Carroll, Susan E. Coffin, Erik R. Dubberke, Kevin W. Garey, Carolyn V. Gould, Ciaran Kelly, Vivian Loo, Julia Shaklee Sammons, Thomas J. Sandora, and Mark H. Wilcox (1998).

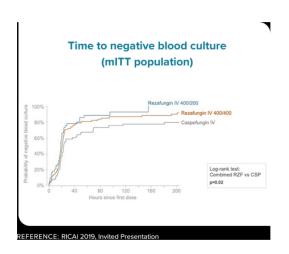
**Centers to Disease Control and Prevention, Atlanta, Georgia: **Eskand Hines J. Viteram Administration Hospial, Hines, and John University Medical Center, Maywood, Illinois: **St Luke's Hespial, Dutuk, Minessetz, **Schan Spring University Medical Center, Maywood, Illinois: **St Luke's Hespial, Dutuk, Minessetz, **Schan Spring University And Center Medical School, Boston, Massachusetts: **McGill University Health Center McGill University Heal

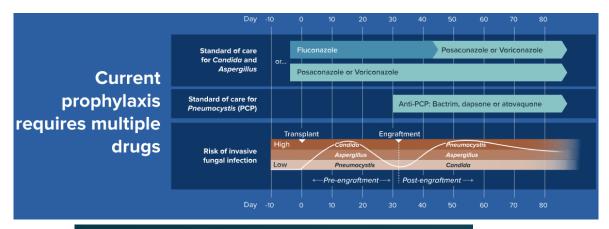

Table 1. Recommendations for the Treatment of Clostridium difficile Infection in Adults

Clinical Definition	Supportive Clinical Data	Recommended Treatment*	Strength of Recommendation Quality of Evidence
Initial episode,	Leukocytosis with a white	VAN 125 mg given 4 times daily for 10 days, OR	Strong/High
non-severe	blood cell count of ≤15000	FDX 200 mg given twice daily for 10 days	Strong/High
	cells/mL and a serum creati- nine level <1.5 mg/dL	 Alternate if above agents are unavailable: metronidazole, 500 mg 3 times per day by mouth for 10 days 	Weak/High
Initial episode,	Leukocytosis with a white	 VAN, 125 mg 4 times per day by mouth for 10 days, OR 	Strong/High
severeb	blood cell count of ≥15000 cells/mL or a serum creati- nine level >1.5 mg/dL	FDX 200 mg given twice daily for 10 days	Strong/High
Initial episode, fulminant	Hypotension or shock, ileus, megacolon	 VAN, 500 mg 4 times per day by mouth or by nasogastric tube. If ileus, consider adding rectal instillation of VAN. Intravenously administered met- ronidazole (500 mg every 8 hours) should be administered together with oral or rectal VAN, particularly if ileus is present. 	Strong/Moderate (oral VAN); Weak/Low (rectal VAN); Strong/Moderate (intrave- nous metronidazole)
First recurrence		 VAN 125 mg given 4 times daily for 10 days if metronidazole was used for the initial episode, OR 	Weak/Low
		 Use a prolonged tapered and pulsed VAN regimen if a standard regimen was used for the initial episode (eg. 125 mg 4 times per day for 10–14 days, 2 times per day for a week, once per day for a week, and then every 2 or 3 days for 2–8 weeks), OR 	Weak/Low
		 FDX 200 mg given twice daily for 10 days if VAN was used for the initial episode 	Weak/Moderate
Second or		VAN in a tapered and pulsed regimen, OR	Weak/Low
subsequent recurrence		 VAN, 125 mg 4 times per day by mouth for 10 days followed by rifaximin 400 mg 3 times daily for 20 days, OR 	Weak/Low
		FDX 200 mg given twice daily for 10 days, OR	Weak/Low
		Fecal microbiota transplantation ^c	Strong/Moderate

McDonald LC et.al. ClinInfectDis. 2018;66(7):e1-e48

Rezafungin - The Long Acting Echinocandin


To date, data demonstrate that rezafungin has strains of <i>Candida</i> spp., <i>Aspergillus</i> spp., <i>Pnet</i> rezafungin has potent activity against fungal part of the CDC.	<i>umocystis</i> spp. and dermatophy	tes. In addition,
Pathogen	CDC Threat Level	Rezafungin
Candida auris	Urgent Threat	\odot
Drug resistant <i>Candida</i>	Serious Threat	\bigcirc
Azole-resistant <i>Aspergillus fumigatus</i>	Watch List	\bigcirc


https://www.cidara.com/rezafungin/

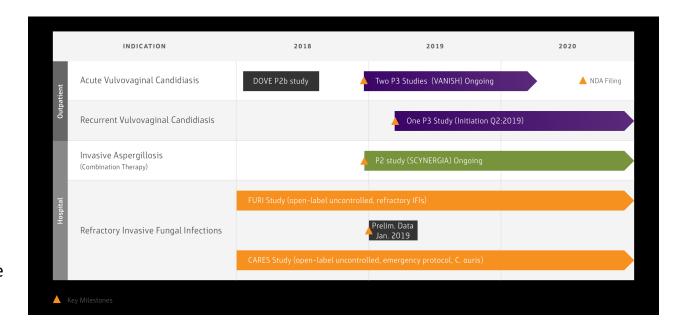
Rezafungin - The Long Acting Echinocandin

Phase 2 STRIVE trial data showed that rezafungin met all of its objectives for safety, efficacy and tolerability in the treatment of patients with candidemia and/or invasive candidiasis.

Cidara's ReSPECT trial (NCT04368559) is a global, randomized, double-blind, controlled, pivotal Phase 3 trial of rezafungin versus the standard antimicrobial regimen to prevent invasive fungal disease due to *Candida*, *Aspergillus* and *Pneumocystis* in subjects undergoing allogeneic BMT. Rezafungin, dosed once-weekly, will be compared to a daily regimen containing multiple drugs including fluconazole or posaconazole, and trimethoprim-sulfamethoxazole, also known as Bactrim, for 90 days, at which time fungal-free survival will be measured as the primary efficacy outcome. The trial will enroll approximately 462 adults with underlying conditions, such as acute myeloid leukemia, acute lymphoblastic leukemia, chronic myelogenous leukemia, myelodysplastic syndrome(s), lymphoma and aplastic anemia, across approximately 30 BMT centers.

https://www.cidara.com/rezafungin/

Ibrexafungerp – First Triterpenoid


Ibrexafungerp is a glucan synthase inhibitor

Activity against:

- Candida spp.
- Aspergillus spp.
- Pneumocystis jiroveci

Oral and IV formulations

Active against isolates with current antifungal resistance

https://www.scynexis.com/pipeline

Ibrexafungerp – First Triterpenoid

Efficacy and Safety of Oral Ibrexafungerp in 41 Patients with Refractory Fungal Diseases, Interim Analysis of a Phase 3 Open-label Study (FURI)

BD Alexander³, OA Cornely¹, PG Pappas², R Miller³, M Johnson³, J Vazquez⁴, L Ostrosky-Zeichner⁵, A Spec⁵, R Rautemaa-Richardson⁷, R Krause⁸, GR Thompson⁹, TJ Walsh¹⁰, CG Morse¹¹, JW Sanders¹¹, D Andes¹², GM Lyon¹³, FM Marty¹⁴, MH Miceli¹⁵, TF Patterson¹⁶, M Hoenigl^{8,17}, N Azie¹⁸, DA Angulo¹⁸

¹University of Cologne, ²University of Alabama Birmingham, ⁵Duke University, ⁴Augusta University, ⁵University of Exas Houston, ⁶Washington University St. Louis, ⁷University of Manchester, ⁶Medical University of Graz, ⁶UC Davis, ¹⁰Cornell University, ¹¹Wake Forest University, ¹²University of Wisconsin, ¹³Emory University, ¹⁸Brigham and Women's Hospital, ¹⁵University of Michigan, ¹⁶UT Health and STVHCS San Antonio, ¹⁷University of California at San Diego, ¹⁸SCYNEXIS, Inc.

BACKGROUND

Ibrexafungerp is a novel class triterpenoid antifungal with activity against Candida, Aspergillus, and Pneumocystis species, including azole- and echinocandin-resistant strains. A Phase 3 open-label, single-arm study of oral ibrexafungerp (FURI) (Clinicaltrials.gov NCT03059992) is ongoing for the treatment of patients (218 years) with fungal diseases who are intolerant of or refractory to standard antifungal therapies.

METHODS

An independent Data Review Committee (DRC) provided an assessment of treatment response for 41 patients who completed therapy by October 2019. Patients were enrolled in 22 centers from six countries. Patients were eligible for enrollment if they had proven or probable, invasive or severe mucocutaneous candidiasis documented evidence of failure of, intolerance to, or toxicity related to a currently approved standard-of-care antifungal treatment or could not receive approved oral antifungal options (e.g., susceptibility of the organism) and a continued IV antifungal therapy was undesirable or unfeasible due to clinical or logistical circumstances.

Demographics

Per Table 1, of the 41 patients analyzed, 22 (54%) were enrolled with invasive candidiasis/candidemia and 19 (46%) with mucocutaneous candidiasis infections; 70% of patients were immunocompromised.

Table 1: FURI Study Patient Demographics

rubic 11 1 ord olddy 1 ddon't Belliographico	
Demographics	Ibrexafungerp
Patients (No.)	41
Mean Days of Therapy	37.2
Site of Infection	# of Patients
Intraabdominal candidiasis	7
Intraabdominal + candidemia	1
Candidemia*	6
Hepato-splenic	2
Osteoarticular	3
Endocarditis, Mediastinitis, Cystitis	1 (each)
Oropharyngeal	8
Esophageal	7
Chronic mucocutaneous	2
Wound infection	2
*One patient with candidemia had UTI	

CONCLUSION

Preliminary analysis of these 41 cases indicate that oral ibrexafungerp provides a favorable therapeutic response in the majority of patients with difficult to treat *Candida* spp. infections, including those caused by non-albicans *Candida* species.

RESULTS

Of the 41 patients analyzed, oral ibrexafungerp showed clinical benefit in 34 patients (83%), including patients with a complete or partial response and patients who maintained stable disease. Six patients (15%) did not respond to the ibrexafungerp treatment (one patient was considered indeterminate).

Table 2: FURI Study Outcomes

Outcomes

	Complete/ Partial Response	Stable Disease	Progression of Disease	Indeterminate
All Patients (41)	23 (56%)	11 (27%)	6 (15%)	1 (2%)

Candida glabrata was the most common pathogen isolated, representing 54% of the 46 Candida species recovered from these patients. 32 patients were infected with one species while two species were isolated in 7 (18%) patients.

Table 3: FURI Study Outcomes by Pathogen

Table 3: FURI Study Outcomes by Pathogen			
Pathogen (n)	Complete/Partial Response	Stable Disease	Progression of Disease
C. glabrata (17)	9	5	3
C. albicans (7)	5	2	
C. krusei (5)	2	3	
C. parapsilosis (3)	3		
	Two Pathogens		
C. glabrata/C. albicans (4)	2		2
C. krusei/C. albicans (1)	1		
C. tropicalis/C. albicans (1)		1	
C. glabrata/C. dubliniensis (1)			1

1 patient outcome indeterminate, 1 patient's organism not identified

Safety

Ibrexafungerp was well-tolerated with the most common treatment-related adverse events being of gastrointestinal origin. No deaths due to progressive fungal disease were reported.

Variation in Clinical Practice and Attitudes in the Management of Fever and Neutropenia in Patients with Hematologic Malignancy: A Survey of Cancer Centers Across the United States

Samuel L. Altken, PharmD, MPH1; Jason N. Barreto, PharmD2; Jerod L. Nagel, PharmD3, Susan K. Seo, MD4; Catherine Liu, MD5;

on behalf of the Antimicrobial Stewardship in Cancer Consortium (ASCC)

Division of Pharmacy, The University of Texas MD Anderson Cancer Center, Houston, TX; 2Department of Pharmacy, Mayo Clinic, Rochester, MN; 3Department of Pharmacy Service, Michigan Medicine, Ann Arbor, MI; Infectious Diseases Service, Memorial Sloan-Kettering Cancer Center, New York, NY; Staccine and Infectious Disease Division, Fred Catherine.liu@fredhutch.org **Hutchinson Cancer Research Center, Seattle, WA**

Contact Information:

Samuel L. Aitken, PharmD, slaitken@mdanderson.org

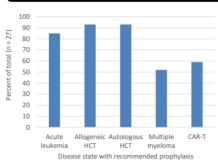
Catherine Liu, MD

ABOUT ASCC

The Antimicrobial Stewardship in Cancer Consortium (ASCC) is a group of pharmacists and physicians practicing at cancer centers nationwide who are dedicated to advancing the science and practice of antimicrobial stewardship in patients with cancer.

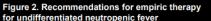
BACKGROUND

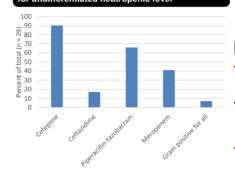
- · Guidelines from multiple organizations exist for the management of neutropenic fever among patients with cancer
- · Recent publications suggest alternative approaches to traditional guideline recommendations for to the management of fever and neutropenia (e.g., continuation of empiric antimicrobial therapy until resolution of neutropenia, use of fluoroguinolone prophylaxis) may not be applicable
- · No contemporary information on management of fever and neutropenia in a representative sample of cancer centers is available
- . The purpose of this study was to survey cancer centers in the U.S. to gauge current practices for fever and neutropenia in patients with hematologic malignancy and hematopoietic cell transplant (HCT) recipients


METHODS

- · In order to identify high-volume cancer centers with a large number of patients with hematologic malignancy, we identified all centers performing > 20 allogeneic HCTs annually from the National Marrow Donor Program's "Be the Match" registry
- · Infectious Diseases (ID) physicians, pharmacists, and others involved in the antimicrobial stewardship program and/or care of immunocompromised patients at each institution were identified by the authors via a manual review of publicly available information sources and personal contacts
- A survey assessing institutional standards and practices was distributed via email using Qualtrics software between 11/7 and 12/12/2019; survey reminders were sent every two weeks
- · Duplicate surveys at the hospital level were removed and only complete responses were assessed using a 5-point Likert scale ranging from "Strongly Agree" to "Strongly Disagree"

· 34/148 (24%) individuals responded from 31/86 hospitals (36%)

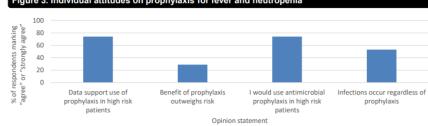

Characteristic	No. (%) of individuals
Profession (n = 34)	
ID / AMS pharmacist	17 (50)
ID physician	12 (35)
Other	5 (15)
Years in practice (n = 29)	
<5	9 (31)
5 – 9	8 (28)
>= 10	12 (41)
Type of practice (n = 34)	
Academic	30 (88)
Other	4 (12)


Figure 1. Disease states where antibacterial prophylaxis is recommended

- 27 / 31 (87%) centers recommend antibiotic prophylaxis
- · Levofloxacin was the most commonly recommended antibiotic in centers recommending prophylaxis

RESULTS

- · 18/29 (62%) specifically provided recommendations on the de-escalation of Gram-negative therapy
- 8/18 (44%) at neutrophil recovery, 7/18 (39%) after 48 ->72 hours being afebrile


SURVEY INSTRUMENT

DISCUSSION

- · Administration of prophylaxis and empiric antimicrobial therapy appears to be consistent with national guideline
- Over 1/3 of respondents do not provide specific quidance on antibiotic de-escalation; among those who provide recommendations, significant heterogeneity in de-escalation approaches were observed
- Prescriber attitudes on antibiotic prophylaxis in patients at high risk for fever and neutropenia indicate uncertainty over the benefit of the practice, yet antibiotic prophylaxis is widely recommended and widely used
- Factors compelling the discordant perceptions surrounding the antibacterial prophylaxis risk/benefit ratio and approach to antibiotic de-escalation requires further exploration.

Figure 3. Individual attitudes on prophylaxis for fever and neutropenia

A hematology/oncology unit-specific antibiogram emphasizes the need for intensified local stewardship

Montefiore

3411 Wayne Avenue, 4H Bronx, NY 10467 Phone: 718-920-7700 rbartash@montefiore.org

Poster number: 192 Rachel Bartash MD¹, Margaret E McCort MD MS¹, Kelsie Cowman MPH¹, Erika Orner PhD², Wendy Szymczak PhD², and Priva Nori MD¹

¹Department of Medicine, Division of Infectious Diseases, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY; ²Microbiology Laboratory, Montefiore Medical Center, Bronx NY

BACKGROUND

- Appropriate empiric antibiotics are key for patients with hematologic malignancies (HM) and bone marrow transplants (BMT) with febrile neurtropenia
- Patients with HM and BMTs are at risk for multidrug resistant organisms
 - Prior antibiotic use and prolonged hospital exposures
- Hospital wide antibiograms (AB) may not accurate reflect resistance patter
- We hypothesized that a unit-specific AB would have decreased susceptibilities compared to our hospital-wide AB

METHODS

Reviewed positive cultures with antimicrobial susceptibilities on a closed 32-bed hematology-oncology unit (7/2016-6/2019)

Organisms with ≥ 30 isolates were included in AB per the Clinical and Laboratory Standards
Institute standards

Susceptibilities compared to hospital-wide AB from 7/2016-6/2019 using Fisher's exact test.

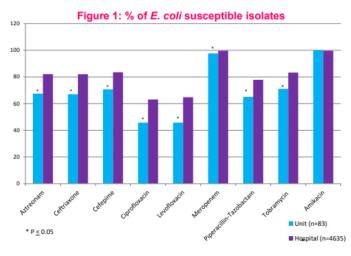


Figure 2: % of K. pneumoniae susceptible isolates

120

80

40

40

40

40

*P ≤ 0.05

*P ≤ 0.05

*Branch for the prediction of the predi

RESULTS

- Two organisms met CLSI criteria:
- Escherichia coli (n=83)
- -Unit isolates had lower susceptibilities to all tested antibiotics, expect amikacin (Figure 1)
- Klebsiella pneumoniae (n=31)
- Unit isolates had lower susceptibilities to aztreonam, ceftriaxone, cefepime, levofloxacin, piperacillin-tazobactam and tobramycin (Figure 2)

CONCLUSIONS

- A hematology-oncology unit-specific AB found higher resistance in Escherichia Coli and Klebsiella pneumoniae isolates compared with the hospital-wide AB.
- Findings can help guide appropriate empiric antibiotic therapy
- Results suggest a need for intensified stewardship measures to prevent multidrug resistance in this population.

ACKNOWLEDGEMENTS

Special thanks to Dr. Liise-anne Pirofski

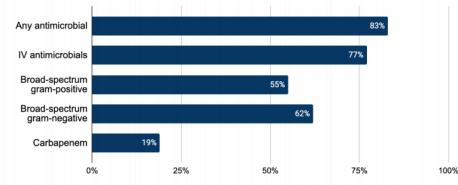
Antimicrobial Stewardship for Patients at the End of Life

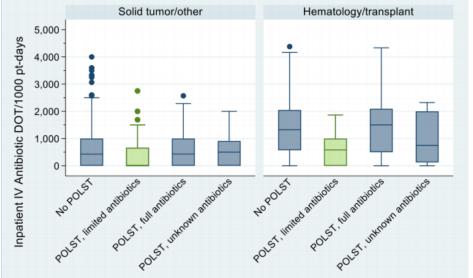
Olivia Kates, MD

Senior Fellow, Infectious Diseases


Masters Candidate, Bioethics and Humanities

University of Washington & Fred Hutchinson Cancer Research Center

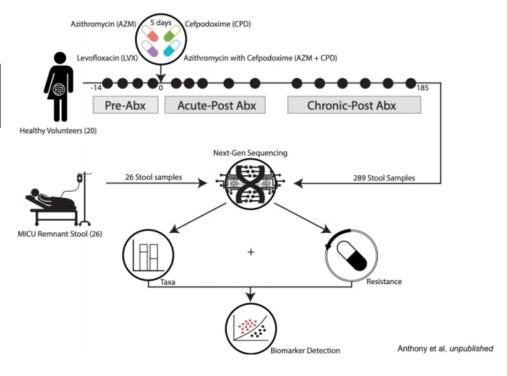



FRED HUTCH

Washington POLST Form: Antibiotics

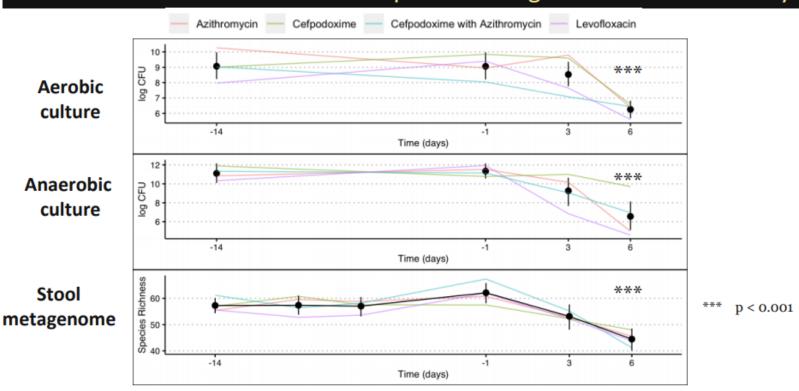
Proportion of patients receiving antimicrobials during last 30 days of life (n=1295 patients with at least 1 inpatient day during the last 30 days of life)

Microbiome Disruption by Oral Antibiotics



The Gut Microbiome and Resistome of Healthy Volunteers are Restructured After Short Courses of Antibiotics

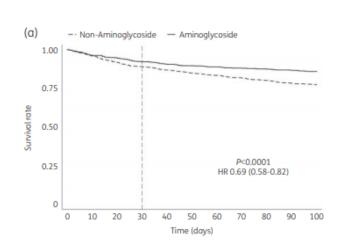
Winston Anthony, BS, Bin Wang, MS, Kimberley Sukhum, PhD, Alaric W. D'Souza, PhD, Candice Cass, AA, Tiffany Hink, BA, Kimberly Reske, MPH, Sondra Seiler BA, Christopher Coon, MS, Erik R. Dubberke, MD, MSPH, Carey-Ann D. Burnham, PhD, Gautam Dantas, PhD, Jennie H. Kwon, DO, MSCI
SHEA Decennial Top Oral Abstracts

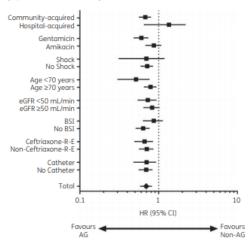


Microbiome Disruption by Oral Antibiotics

Short courses of antibiotics can perturb the gut microbiome acutely

Repurposing Older Drugs


Retrospective study from large hospital in Israel

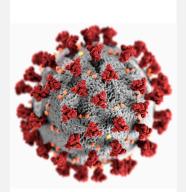

- Stewardship program promoted aminoglycosides as first-line therapy for adult pyelonephritis
 - Bacteremia included
 - Neutropenia excluded
 - Oral step down allowed
- N=2026; 715 AG, 1311 non-AG
- Median age 82
- Median duration 3 days (IQR 2-5)
- Primary endpoint, death within 30 days: 7.6 vs. 11%
- AKI occurred in 2.5% vs. 2.9%

Effectiveness and safety of an institutional aminoglycoside-based regimen as empirical treatment of patients with pyelonephritis

Meital Elbaz¹, Hila Zadka², Ahuva Weiss-Meilik² and Ronen Ben-Ami^{3,4}*

¹Internal Medicine, Tel Aviv Medical Center, Tel Aviv, Israel; ²Data Science and Quality Division, Tel Aviv Medical Center, Tel Aviv, Israel; ³Infectious Diseases Unit, Tel Aviv Medical Center, Tel Aviv, Israel; ⁴Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel

Elbaz M et.al. J Antimicrob Chemother 2020; 75: 2307-2313


ID WEEK 2020 IN BRIEF REVIEW

Ania Sweet, PharmD, BCOP

OBJECTIVES

- 1. Review clinical presentation of COVID-19 infections and what we have learned in 2020
- 2. Review long term sequela of COVID-19 infections.
- 3. Analyze prescribing trends of oseltamivir and antibiotics in patients with laboratory confirmed influenza in an ambulatory cancer center.

CLINICAL SPECTRUM OF COVID-19 PRESENTATIONS: FROM FLICKERS TO BLAZING INFERNOS

Asymptomatic Infections

- Estimated 30-40% but could be higher
- Symptoms could still occur later even if asymptomatic at baseline
- Some are "pre-symptomatic"
- Even if asymptomatic can still have clinical abnormalities (CT scan of chest)
- Still can spread infection, but lower risk

Symptomatic Infections (most are not severe)

Mild 81%

No or mild pneumonia

Severe 14%

- Dyspnea, hypoxia, or >50% lung involvement on imaging within 24-48 hrs
- Critical 5%

Preeti Malani, MD, MSJ University of Michigan Ann Arbor

Clinical Presentation

- Incubation
 - Median 5-6 days, up to 14 days
- Symptoms at the time of testing
 - Cough (50%)
 - Fever (43%)
 - Dyspnea (19%)
 - Headache (34%)
 - Loss of smell/taste (10%)
 - Sore throat (20%)

Not Just Respiratory virus...

Critical illness and multiple systems

- Resp: PNA, ARDS
- CV: arrhythmias, acute cardiac injury, cardiomyopathy
- Heme: hypercoagulability/thrombotic complications: PE, CVA
- Inflammatory responses: CRS

CLINICAL SPECTRUM OF COVID-19 PRESENTATIONS:
FROM FLICKERS TO BLAZING INFERNOS

Preeti Malani, MD, MSJ University of Michigan Ann Arbor

NEUROLOGIC DYSFUNCTION

- Contrary to some earlier reports, for most patients, anosmia does NOT appear to be permanent
- ▶ Other neurologic dysfunction, usually from cerebrovascular complications, are long lasting
- ▶ Significant burden of non-COVID related delays in care having worse outcome from delays in stroke care?

POST ICU CARE SYNDROME

- ▶ PICS affects up to half of ICU admissions
- ▶ More likely in those treated with ventilation and with comorbidities
- ► Combination of pulmonary issues, physical debility and psychologicla impact
- Needs multidisciplinary recovery approach

48 DAYS AFTER DISCHARGE

- ▶ UK study found fatigue in 60.3% of admissions and 72% of ICU admissions
- ▶ Breathlessness in 42.6% inpatients and 65.6 of ICU patients
- ▶ PTSD in 23.5% of inpatients and 46.9% of ICU patients

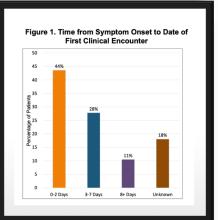
John O'Horo, Sr., MD, MPH Mayo Clinic

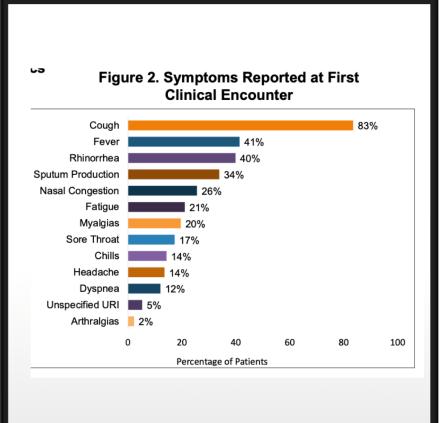
CARDIAC EFFECTS

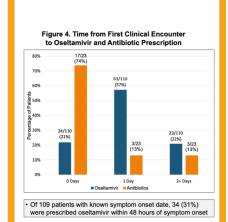
- 78 patients who recently recovered from COVID-19, 75% had abnormal cardiac MRI
 - Long lasting effects on cardiac function?
- 26 athletes, 4 had abnormal findings on cardiac MRI suggestive of myocarditis
 - Are these reversible?

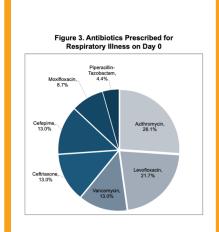
Antiviral and Antibiotic Prescribing Among Patients at an Ambulatory Cancer Center with Laboratory-Confirmed Influenza

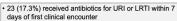
Woody Sorey, BA, Elizabeth M. Krantz, MS, Jessica Morris, MPH, John Klaassen, BA, Ania Sweet, PharmD, 23 Frank Tverdek, PharmD, 23 Steven A. Pergam, MD, MPH, 23.4 Catherine Liu, MD, FIDSA 23.4


1School of Medicine, University of Washington, Seattle, WA; 4Vaccine and Infectious Disease Division, Fred Hutch Cancer Research Center, Seattle, WA; 4Seattle Cancer Care Alliance, Seattle, WA; 4Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA;


Poster #1505


Table 1. Patient Demographics and Characteristi


Baseline ¹ Characteristic	Antiviral Prescribed (n=110)	No Antiviral Prescribed (n=23)
Age (years), median (IQR)	57 (40 – 66)	47 (29 – 66)
Sex Male Female	65 (89) 45 (75)	8 (11) 15 (25)
Diagnosis Heme Malignancy Solid Tumor Other	93 (85) 11 (73) 6 (67)	16 (15) 4 (27) 3 (33)
Clinical Service Heme Solid Tumor Transplant (BMT) Other	58 (83) 11 (65) 38 (88) 3 (100)	12 (17) 6 (35) 5 (11) 0 (0)
Absolute Neutrophil Count ³ – median (IQR)	2.7 (1.6, 4.9)	2.9 (1.7, 5.2)


¹Values are in n (%) unless otherwise specified. ²Baseline defined as date of first clinical encounter. ³ANC in units of 10³ cells/µL

^{• 17 (12.8%)} received antibiotics for URI or LRTI on Day 0

Table 2.	Clinical	Out	tcomes
----------	----------	-----	--------

Outcome	Number of Patients (%)	
LRTI ²	10 (7.5)	
Influenza-Related ED Visit	7 (5.3)	
Influenza-Related Hospitalization	11 (8.3)	
Influenza-Related ICU Admission	1 (0.8)	
Intubation / Mechanical Ventilation	0	

¹Outcomes captured from day 0 to day 14 ²One microbiologically documented bacterial pneumonia (sputum culture: MSSA)

Conclusions

- NAIs were frequently prescribed among cancer patients, but less than a third received treatment within 48 hours of symptom onset.
- Most were prescribed NAIs only after test results were available, while antibiotics were prescribed empirically.
- Delayed presentation to care is an obstacle to early NAI use; patient and provider education along with rapid diagnostics are needed to improve early NAI use among cancer patients with influenza.

Questions?

