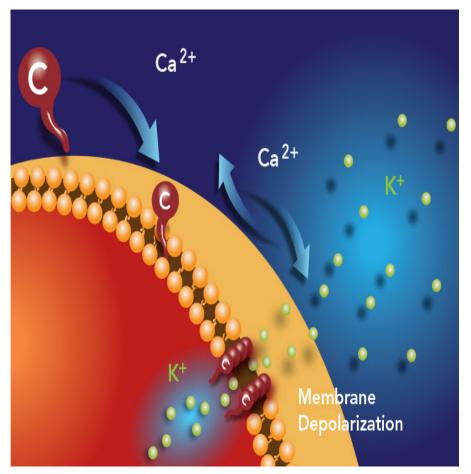


May 21, 2019

Agenda

- Daptomycin Dosing
- Case Discussions
- Open Discussion

Daptomycin Dosing


Jeannie Chan, PharmD, MPH

UW Medicine | Harborview Medical Center

Mechanism of Action

Cyclic polypeptide

- Binds to cell membrane
 - Calcium-dependent
- Depolarization of cell membrane
 - Efflux of potassium
 - Destroys ionconcentration gradient

Daptomycin

Concentration dependent killing

Gram positive organisms including MRSA and VRE

- FDA approved dosing based on <u>total body weight</u>:
 - Skin and soft tissue infection: 4mg/kg/day
 - Bacteremia/right sided endocarditis: 6mg/kg/day

Which Daptomycin dose do you use for bacteremia?

- 4mg/kg/day
- 6mg/kg/day
- 8-10mg/kg/day
- I am not sure

Why do we care about dosing?

Clinical Efficacy

Toxicity

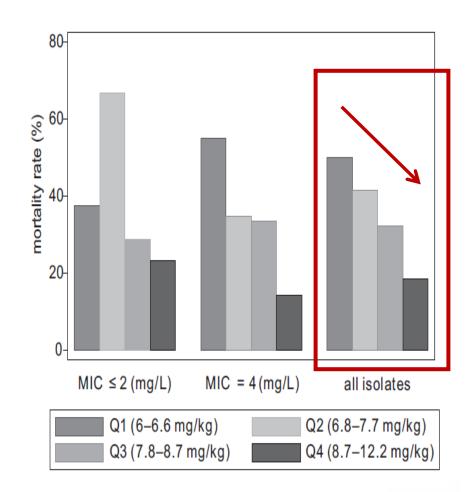
Resistance

Clinical Efficacy

- Vancomycin resistant enterococcal bloodstream infections (VRE BSI)
- No head to head randomized controlled trials of daptomycin (DAP) vs. linezolid (LZD)
- Earlier meta-analyses favored LZD over DAP:
 - Methodologic limitations: retrospective studies, single center, heterogeneity
 - Median DAP daily dose of 6mg/kg affected outcomes?
 - 1. Whang DW et al. AAC. 2013; 57:5013-18.
 - 2. Balli EP et a. AAC. 2014; 58:734-39.
 - 3. Chuang YC, et al BMC Infect Dis. 2014;13;14:687

National VA Cohort

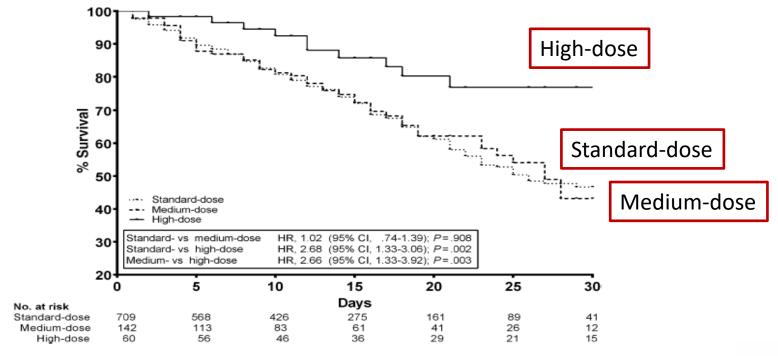
- N=644 suggested higher clinical failure, and 30-day mortality with <u>continuous</u> LZD compared to DAP (median dose = 6mg/kg/d)
- N=2630 compared <u>continuous and sequential</u> DAP or LZD using propensity score matching:
 - Median DAP dose = 6mg/kg/d
 - Continuous LZD associated with more persistent VRE BSI, longer LOS, and higher mortality compared to DAP
 - LZD to DAP switch had a lower 30d mortality than those remained on LZD


Dose Implication

 Two hospitals in Taiwan (n=212) comparing DAP to LZD for VRE BSI

 LZD associated with lower 14d mortality

 Mortality was similar between LZD and high dose DAP (> 9mg/kg/d)



Dose Implication

N=911 comparing DAP standard (6mg/kg/d), medium (8mg/kg/d) and high (\geq 10mg/kg/d) dose

MRSA BSI

- National VA cohort study (n=371) comparing DAP label dose (6mg/kg/d) and high dose (> 7mg/kg/d)
- MRSA BSI treated with vancomycin within 24 hours of positive blood culture, switched to DAP within 7d; (median = 4d)
- DAP high dose:
 - 7mg/kg (43%); 8-9mg/kg (50%); \geq 10mg/kg (7%)
- High dose DAP was associated with lower 30d mortality using propensity score matching

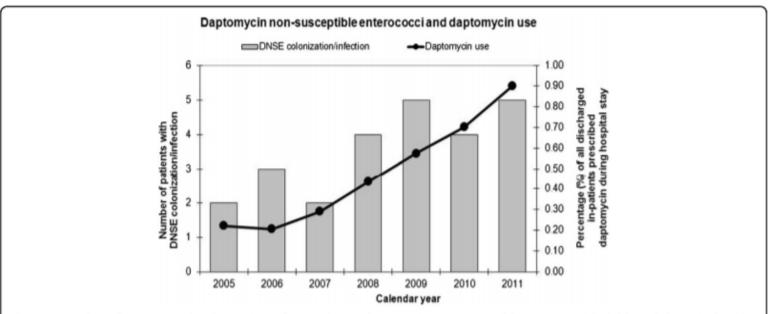
IDSA Guidelines: high dose DAP

- MRSA bacteremia and endocarditis: "some experts recommend DAP at <u>8-10mg/kg</u>"
- Persistent MRSA bacteremia and vancomycin treatment failures: "high dose DAP <u>10mg/kg</u>"
- Native valve endocarditis caused by staphylococci: "DAP <u>> 8mg/kg"</u>
- Endocarditis caused by ampicillin and vancomycin resistant enterococci: "DAP <u>10-12mg/kg</u>"

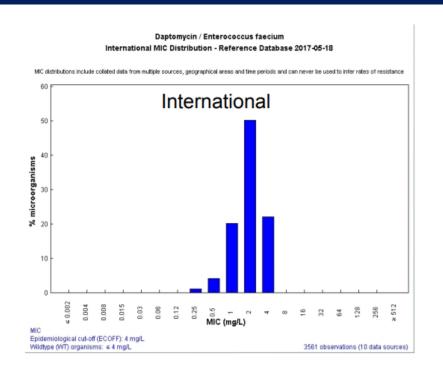
Toxicity

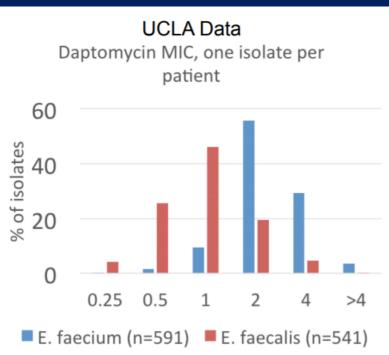
- Myopathy (2-14%), rhabdomyolysis (5%)
- Median CPK was similar among patients in low, medium, and high DAP dose.
- No association was observed between CPK elevations and AKI.
- No increased risk of CPK elevations among patients on concomitant statins.

DAP and statin co-administration


- Single center, case control study (n=3042)
 examining risk factors for DAP associated myopathy
 - Myopathy defined as CPK above ULN
 - Rhabdomyolysis defined as CPK ≥ 10x ULN
 - Mean DAP dose: 6mg/kg/day
- Myopathy
 - 128 (4.2%) after 17d, statin is a risk factor
- Rhabdomyolysis
 - 25 (0.8%) 11d, obesity and statin are both risk factors

Resistance


DAP exposure precedes infection/colonization with DAP non-susceptible enterococcus (DNSE)



Daptomycin MIC distribution

EUCAST MIC Distributions

Table 1: MIC distributions and epidemiological cut-off values (mg/L) for Enterococcus spp.

Organism	≤0.06	0.125	0.25	0.5	1	2	4	8	≥16	ECOFF
Enterococcus faecalis	51	166	765	8064	12321	3255	398	5	0	2
Enterococcus faecium	10	63	144	611	3228	14761	1495	23	5	4

Time to change breakpoint

Clinical Infectious Diseases

MAJOR ARTICLE

Influence of Minimum Inhibitory Concentration in Clinical Outcomes of *Enterococcus faecium* Bacteremia Treated With Daptomycin: Is it Time to Change the Breakpoint?

Bhavarth S. Shukla,^{1,2} Samuel Shelburne,^{2,3} Katherine Reyes,⁴ Mini Kamboj,⁵ Jessica D. Lewis,⁶ Sandra L. Rincon,^{1,7} Jinnethe Reyes,⁷ Lina P. Carvajal,⁷ Diana Panesso,^{1,7} Costi D. Sifri,⁶ Marcus J. Zervos,^{4,8} Eric G. Pamer,⁵ Truc T. Tran,¹ Javier Adachi,² Jose M. Munita,^{1,9} Rodrigo Hasbun,¹ and Cesar A. Arias^{1,7}

¹University of Texas Medical School at Houston, ²Department of Infectious Diseases, and ³Genomic Medicine, M.D. Anderson Cancer Center, Houston, Texas; ⁴Department of Internal Medicine, Division of Infectious Diseases, Henry Ford Hospital, Detroit, Michigan; ⁵Memorial Sloan Kettering Cancer Center, New York, New York; ⁶Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health System, Charlottesville; ⁷Molecular Genetics and Antimicrobial Resistance Unit, Universidad El Bosque, Bogota, Colombia; ⁸Wayne State University School of Medicine, Detroit, Michigan; and ⁹Clinica Alemana, Universidad del Desarrollo, Santiago, Chile

- VRE BSI with DAP MIC of 3-4 μg/mL is associated with microbiologic failure
- DAP dose of \geq 8mg/kg may be more effective than lower dose

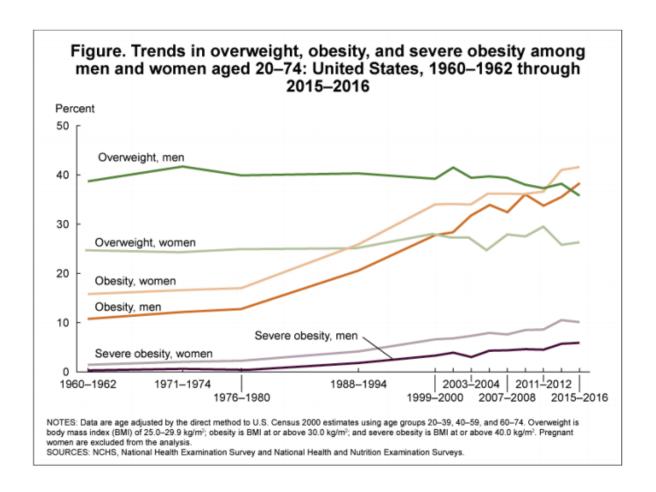
CLSI MIC Breakpoints

Enterococcus	Daptomycin MIC (mcg/mL)		
	Previous	Updated	
Susceptible	<u><</u> 4	≤ 1*	
Susceptible Dose Dependent (S-DD)		2-4**	
Resistant	<u>></u> 8	<u>≥</u> 8	

^{**}The S-DD category is based on a dosage regimen of <u>8-12 mg/kg/day</u> in adults and is intended for serious infections due to Enterococcus spp. ID consultation is recommended.

^{*}Based on a dosage regimen of <u>6 mg/kg/day</u> in adults

Intermittent Hemodialysis (IHD)


FDA approved dosing: 4-6mg/kg/day q48h

 DAP AUC in IHD patients are 50% lower than non-HD patients during the final 24h of the 72h interdialytic period

Suggest 50% dose increase if 3 days between HD

Americans are getting BIGGER

Which weight do you use for obese patients?

- Total body weight (TBW)
- Ideal body weight (IBW)
- Adjusted body weight (AdjBW)
- I am not sure

Ideal Body Weight (IBW)

- University of Wisconsin adopted institutional-wide DAP dosing initiative based on IBW in 2010
- Clinical outcomes were similar between patients dosed on TBW (n=69) and IBW (n=48) with an average BMI of 31 kg/m²
- Limitation:
 - Majority of patients (>60%) were treated for intraabdominal infections, SSTI, or UTI

Adjusted Body Weight

 DAP dosing protocol based on TBW vs. AdjBW in patients with BMI > 30 kg/m²

 No difference: clinical outcomes, 90d re-admission and mortality

	TBW; N=50 (%)	AdjBW; N=51 (%)
Average BMI (kg/m²)	35	37
Low DAP dose (6mg/kg/d)	41 (82)	11 (22)
Medium DAP dose (6.1-8mg/kg/d)	7 (14)	23 (45)
High DAP dose (>8mg/kg/d)	2 (4)	17 (33)

Fixed Dosing

- Assumptions for total body weight based dosing:
 - drug clearance (CI) and volume of distribution (Vd) change proportionately with total body weight
- No significant difference in Cl, Vd, or half life between morbidly obese and non-obese PK models

 Fixed non-weight based dosing for morbidly obese patients?

Summary: Dose Matters!

	DAP dose
MRSA BSI	<pre>> 8mg/kg</pre>
VRE BSI	<u>></u> 10mg/kg
Intermittent Hemodialysis	50% dose increase if 3d between HD
Obesity	IBW/AdjBW/TBW

