Oral Antibiotic for Definitive Therapy for Gram-negative Bacteremia

Emily Spivak, MD, MHS, FIDSA Associate Professor of Medicine Medical Director, Antimicrobial Stewardship Programs University of Utah Health and Salt Lake City VA

Objectives

- Review recent data regarding oral antibiotics for uncomplicated Gram-negative bacteremia (GNB).
- Discuss possible impacts of an Antimicrobial Stewardship bundle for GNB.

Uncomplicated Gram-negative bacteremia

- No current or expected neutropenia
- No history of stem cell transplant or GVHD in last 12 months
- No history of solid organ transplantation on current immunosuppression
- Source control obtained
- No bone and joint, cerebral or endovascular complications
- Clinically improving
- *Common sources: UTI, intraabdominal infection, catheter-related bloodstream infection

Background

- Current Treatment Strategies
 - Current guidelines recommend antibiotic treatment duration between "7 and 14 days"
 - "Intravenous antimicrobial therapy with transition to oral antibiotics if clinically appropriate"
 - Historically duration was 14 days frequently with PICCs
 - Associated harm has motivated evolving data
- More recent data suggest that durations of therapy shorter (7 days) lead to similar outcomes as prolonged durations, and with less harm
- Evolving Questions
 - Oral antibiotics
 - Role of repeat blood cultures
 - Shortest effective duration
 - Special populations/organisms

IDSA Infection-Specific Guidelines & Bacteremia

Guideline	Duration Recommendation
2004 Bacterial meningitis	Not addressed
2007 Community-acquired pneumonia	Not specifically addressed
2009 Intravascular catheter-related infections	Organism specific
2009 Catheter-associated urinary tract infections	Not addressed
2010 Intra-abdominal infection	Not addressed
2010 Uncomplicated urinary tract infections	Not addressed
2012 Diabetic foot infections	Not addressed
2014 Skin and soft tissue infections	Not addressed
2016 Hospital- & ventilator-associated pneumonia	Not addressed
2017 Nosocomial ventriculitis / meningitis	Not addressed

Background

 Potential treatment options (& limitations) for definitive therapy of Enterobacteriaceae bacteremia

Hale AJ, et al. J Hosp Med 2018;13(5):328 Hospenthal DR, et al. Open Forum Infect Dis 2019 [ahead of print]

*TMP-SMX: trimethoprim – sulfamethoxazole

JAMA Internal Medicine | Original Investigation | LESS IS MORE

Association of 3O-Day Mortality With Oral Step-Down vs Continued Intravenous Therapy in Patients Hospitalized With Enterobacteriaceae Bacteremia

• Oral step-down (in 1st 5 days) vs. continued iv therapy for Gram-negative bacteremia

Step-down therapy	N (%) N= 739
Oral β-lactam	122 (17)
Fluoroquinolone	518 (70)
TMP/SMX	99 (13)

30-day Recurrent bacteremia

- 6 episodes (0.8%) in oral stepdown group
- 4 (0.5%) in the IV group (HR, 0.82; 95% CI 0.33-2.01)

Tamma PD, et al. JAMA Intern Med. 2019 Mar 1;179(3):316-323.

Background

- 2019 meta-analysis (8 retrospective studies)
- Gram-negative bacteremia & definitive treatment = fluoroquinolones / TMP-SMX (n=1,666) vs. oral β-lactams (n=623)

Thus far...

- Observational studies, subsets of RCTs and PK/PD principles support use of high bioavailability oral agents for Gram-negative bacteremia
 - Use of oral β -lactams more controversial

Original Investigation | Infectious Diseases

Oral β -Lactam Antibiotics vs Fluoroquinolones or Trimethoprim-Sulfamethoxazole for Definitive Treatment of Enterobacterales Bacteremia From a Urine Source

Jesse D. Sutton, PharmD, MS; Vanessa W. Stevens, PhD; Nai-Chung N. Chang, PhD; Karim Khader, PhD; Tristan T. Timbrook, PharmD, MBA; Emily S. Spivak, MD, MHS

- Retrospective cohort study
- Urine source
- Veterans Affairs hospitals (n = 114)
- January 1, 2006 September 30, 2015

High-bioavailability

Fluoroquinolones

Trimethoprim-sulfamethoxazole (TMP-SMX)

Low-bioavailability

Aminopenicillins

 β -lactam/ β -lactamase inhibitors

Cephalosporins

Sutton JD, et al. JAMA Netw Open. 2020 Oct 1;3(10):e2020166.

Inclusion Criteria

- Blood culture: *Escherichia coli, Klebsiella* species*, *Proteus* spp.
- Urine culture organism** = blood culture organism
- Hospitalization for $\geq 1 \text{ day}^{**}$
- In vitro active, empiric, parenteral antibiotics for ≥ 1 day
- Conversion to oral antibiotics alone on day 2 6

HEALTH UNIVERSITY OF UTAH

Outcomes

• Primary

 \odot 30-day mortality & recurrent Enterobacterales bacteremia*

Secondary

 \circ 90-day mortality & recurrent Enterobacterales bacteremia*

- Propensity-based overlap weights
- Log binomial regression models \rightarrow relative risk & risk differences

*Recurrent bacteremia: same organism species as initial culture. Outcome window begins on the first day of oral antibiotics.

High-bioavailability (n = 3,135)

*All inclusion/exclusion previously listed unless otherwise specified

**Amoxicillin-clavulanate Sutton JD, et al. JAMA Netw Open. 2020 Oct 1;3(10):e2020166.

Baseline Characteristics & Comorbidities

Characteristic	High (n=3,315)	Low (n=955)
Age (years) – median (IQR)	69 (62, 80)	73 (64, 83)
Male sex	2,848 (91%)	884 (93%)
Comorbidity score – median (IQR)*	1 (0, 2)	1 (0, 3)
Comorbidity score > 2*	782 (25%)	296 (31%)
Chronic kidney disease	565 (18%)	227 (24%)
Diabetes w/ complication	402 (13%)	130 (14%)
Immunocompromised**	182 (6%)	61 (6%)
Cirrhosis	88 (3%)	20 (2%)

*Combined Elixhauser – Charlson Comorbidity Index score (Gange J, et al. J Clin Epidemiol 2011;64:749) **Organ transplant, WBC ≤ 1,000 / mm³, high dose steroids, transplant antirejection medication, other medications

Outcomes

Outcome	High (n=3,315)	Low (n=955)	Adjusted relative risk (95% CI)
30-day mortality & bacteremia	94 (3.0%)	42 (4.4%)	1.3 (0.9 – 1.9)
Mortality	82 (2.6%)	29 (3.0%)	1.0 (0.7 – 1.5)
Recurrent bacteremia	12 (0.4%)	14 (1.5%)	3.2 (0.5 – 21.9)
90-day mortality & bacteremia	238 (7.6%)	96 (10.1%)	1.3 (0.9 – 1.9)
Mortality	208 (6.6%)	75 (7.9%)	1.1 (0.8 – 1.4)
Recurrent bacteremia	34 (1.1%)	25 (2.6%)	2.1 (0.9 – 4.9)

Relative risk reported based on receipt of a low-bioavailability antibiotic

Conclusions

- No significant differences in mortality + recurrent bacteremia
 o Possible increased risk of recurrent bacteremia with oral β-lactams
 o Absolute risk and risk difference are small (~1%)
- Oral β-lactams are a reasonable definitive treatment in certain patients Further understanding of risks of recurrence and optimal patient selection
- Considerations for interpretation

○ Shortest effective duration = unknown → null effect of oral antibiotics?
 ○ Residual confounding?

Erickson RM, et al. Open Forum Infectious Diseases. November 2019:ofz490.

Stewardship Bundle for Uncomplicated Gram-negative Bacteremia

(Minimize repeat blood cultures, IV to PO ABX switch, 7 day duration of therapy)

- Retrospective cohort study
- Inclusion
 - Adult patients admitted to the University of Utah Hospital
 - 11/2014-10/2015 and 10/2017-9/2018
 - At least one positive BCx for a Gram-negative organism
- Pre-ASP: prior to a formal ASP, after BCID implementation
- Post-ASP: Bundle

NoteWriter 📲 🔋 < Clear Blood Culture 🖉 🗸

Blood Culture Edit Note

Antimicrobial	Stewardship	Blood Cu	ture Note
---------------	-------------	----------	-----------

FilmArray BCID Results

enterococcus	listeria monocytogenes
staphylococcus species	staphylococcus aureus
streptococcus species	streptococcus agalactiae
streptococcus pyogenes	streptococcus pneumoniae
acinetobacter baumannii	haemophilus influenza
neisseria meningitides	pseudmonas aeruginosa
enterobacteriaceae	enterobacter cloacae complex
escherichia coli	klebsiella oxytoca

klebsiella pneum Assessment and Plan:

<u>Workflow</u>

- BioFire FilmArray BCID
- ASP review blood culture report in Epic (M F)
- Most recs initially given in-person and documented in progress note

serratia marcesc If able to comply with oral therapy, reasonable to consider [insert antibiotic agent].

candida glabrata

Candida parapsi therapy in large multicenter retrospective cohorts (Tamma PD, JAMA Intern Med 2019) and randomized controlled trial (Yahav, Clin Infect Dis 2018) of Enterobacteriaceae mecA gene - me

KPC - carbapene Based on retrospective cohort study data in patients with Enterobacterales bacteremia from a suspected urine source, the relative risk of recurrent bacteremia at 30 days was not significantly higher with oral β-lactam antibiotics as definitive therapy than with fluoroquinolones or trimethoprim-sulfamethoxazole, and the absolute risk difference was small. No significant difference in mortality was observed. (Sutton JD, JAMA Network Open 2020)

Recommend treating Enterobacteriaceae bacteremia for 7 days total rather than longer durations as shown to be effective in retrospective multicenter data (majority of urinary tract and gastrointestinal source) and possibly decrease risk of multi-drug resistance development (Chotiprasitsakul, Clin Infect Dis 2017; Mercuro, IJAA 2017; Rieger, Pharmacotherapy 2017). A multicenter randomized controlled trial (n=604) of Enterobacteriaceae bacteremia patients data, majority of pyelonephritis source, supports a 7-day duration (Yahav D, Clin Infect Dis 2018) as long as the patient had defervescence for 48 h and without an uncontrolled source of infection or neutropenia. Furthermore, shorter durations have been associated with decreased risk of C. Difficile infections (Stevens, Clin Infect Dis 2011). Finally, **consider avoidance of follow up blood cultures** based on clinical response and overall reported lack of clinical utility and unintended consequences (longer LOS, healthcare costs, inappropriate use of antibiotics; Canzoneri Clin, Infect Dis 2017; Wiggers, BMC Infect Dis 2016).

Submitted by: Emily R Sydnor Spivak, MD

For additional questions please page the on call Infectious Disease - Antimicrobial Stewardship Program team member or Dr. Emily Spivak via SmartWeb.

Stewardship Bundle for Uncomplicated Gram-negative Bacteremia

	Pre-ASP Intervention	Post-ASP Intervention	
	(n=50)	(n=61)	P-value
Duration of Therapy	14 (10-16)	9 (7-14)	< 0.01
IV to PO Switch Day	5 (4-6)	3.5 (3-5)	0.02
PICC Placement	8 (16)	5 (8.2)	0.23
Definitive Therapy			
Beta-lactam/SMX-TMP	10 (20)	29 (47.5)	< 0.01
Fluoroquinolone	23 (46)	23 (37.7)	0.38
Bacteremia Recurrence	0 (0)	1 (1.6)	0.36
Readmission Rates	20 (40)	14 (23)	0.05
30-day Mortality	0 (0)	1 (1.6)	0.36

**Total hospital cost per case decreased by 27%

Predictors of Long Treatment Duration

Table 3. Predictors of Long Treatment Duration

	Univariate OR (95% CI)	Р	Multivariate OR (95% CI)
Age ≥65 y	1.09 (0.59–1.50)	.80	
Pre-ASP intervention period	3.06 (1.50–6.43)	<.01	3.67 (1.60-8.44)
Charlson Comorbidity Index ≥2	1.19 (0.55–2.61)	.66	
Immunosuppression	0.49 (0.07–2.61)	.42	
E. coli	0.27 (0.12–0.59)	<.01	0.27 (0.11–0.68)
Pitt Bacteremia Score >3	1.51 (0.75–3.07)	.26	
Repeat blood cultures	3.46 (1.73–7.09)	<.01	3.54 (1.57–7.98)
Urinary source	0.79 (0.40–1.58)	.51	
Genito-urinary tract obstruction	3.84 (1.28–14.25)	.03	8.03 (2.06–31.28)

Abbreviations: ASP, antimicrobial stewardship program; CI, confidence interval; OR, odds ratio.

Conclusions

- Data is evolving, but doesn't seem to be higher risk of recurrent bacteremia or mortality with oral beta-lacatams vs. FQ or TMP/SMX for uncomplicated GNB
- Bundle for GNB a great Stewardship opportunity!
- Areas for further research
 - Optimal dosing for oral step-down options
 - Role of oral antibiotics in severely immunocompromised populations
 - Duration and oral antibiotics in genitourinary obstruction (partial source control)

Questions

Urologic Comorbidities

Characteristic	High (n=3,315)	Low (n=955)
History of UTI (1 year)	887 (28%)	401 (42%)
Previous UTI antibiotics (30 days)	398 (13%)	222 (23%)
Prostate hypertrophy	877 (28%)	324 (34%)
Urinary retention, obstruction, other structural abnormality	723 (23%)	288 (30%)
Urologic procedure (90 days)	562 (18%)	212 (22%)
Prostate cancer	408 (13%)	143 (15%)
Spinal cord injury / multiple sclerosis	129 (4%)	52 (5%)
Urinary calculi (30 days)	138 (4%)	35 (4%)