Modern Biotechnology in the Clinical Microbiology Lab Faster Methods for Getting Actionable Intelligence to Physicians

Robert J. Cybulski Jr., PhD
Microbiology Fellow
UWMC Department of Laboratory Medicine
cybulski@uw.edu

Clinical Laboratory Accreditation

- CLIP = Clinical Laboratory Improvement Program
 - Result of Clinical Laboratory Improvement Amendments (CLIA) of 1988
 - Mechanism by which the Centers for Medicare & Medicaid Services (CMS) regulates laboratory testing
 - All clinical laboratories must be properly certified to receive Medicare/Medicaid payments
- CAP = College of American Pathologists
 - Accrediting body for hospital pathology and laboratory services
 - 2 year accreditation cycle
- Purpose: to ensure quality results, drive implementation of Quality Control/Quality Assurance measures
- Effect: Labs frequently limited to FDA-approved methods and/or labor-intensive laboratory-derived tests

Clinical Scenario #1

50 year old female, recently Army retiree presents 1 year out from a right total knee replacement with worsening knee pain and mild swelling along with some night sweats. She is taken to the OR and the hardware is removed and sent down to the lab for culture...

Bacterial Culture and Identification Timeline

IDSA GUIDELINES

A Guide to Utilization of the Microbiology Laboratory for Diagnosis of Infectious Diseases: 2013 Recommendations by the Infectious Diseases Society of America (IDSA) and the American Society for Microbiology (ASM)^a

Ellen Jo Baron, ^{1,2} J. Michael Miller, ³ Melvin P. Weinstein, ⁴ Sandra S. Richter, ⁵ Peter H. Gilligan, ⁶ Richard B. Thomson Jr., ⁷ Paul Bourbeau, ⁸ Karen C. Carroll, ⁹ Sue C. Kehl, ¹⁰ W. Michael Dunne, ¹¹ Barbara Robinson-Dunn, ¹² Joseph D. Schwartzman, ¹³ Kimberle C. Chapin, ¹⁸ James W. Snyder, ¹⁵ Betty A. Forbes, ¹⁶ Robin Patel, ¹⁷ Jon E. Rosenblatt, ¹⁷ and Bobbi S. Pritt¹⁷

Department of Pathology, Stanford University School of Medicine, Stanford, California; "Occapitation," Personal California; "Microbiology Technical Services, LLC, Durnwoody, Georgia; "Department of Medicine and Pathology, Robert Wood Johnson Medicia School, New Burnswick, New Jersey, "Department of Olinical Pathology, Cleveland Clinic, Cleveland, Ohin; "Department of Pathology and Laboratory Medicine, Livivessity Ohnth Carolina; and Laboratory Medicine, Livivessity Ohnth Carolina; "Department of Pathology, NorthShore University School of Medicine, Beltimore, Manyland; "Department of Pathology, NorthShore University School of Medicine, Blatimore, Manyland; "Department of Pathology, Medical College of Wisconsin, Milwaukse, Wisconsin," "bidMerieux, Inc., Durham, North Carolina, and Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri; "Department of Pathology, William Beaumont Hospital to Beaumont Health System, Royal Oak, Michigan; "Department of Pathology, Brown Alpert Medical School, Providence, Bhode Island; "Department of Laboratory Medicine, University of Louisville, Louisville, Kennacky, "Department of Pathology, Wilginia Commonwealth University Medical Center, Richmond, Virginia; and "Department of Laboratory Medicine and Pathology, Mayo Clinic, Bochester, Minnesota

The critical role of the microbiology laboratory in infectious disease diagnosis calls for a close, positive working relationship between the physician and the microbiologists who provide enormous value to the health care team. This document, developed by both laboratory and clinical experts, provides information on which tests are valuable and in which contexts, and on tests that add little or no value for diagnostic decisions. Sections are divided into anatomic systems, including Bloodstream Infections and Infections of the Cardiovascular System, Central Nervous System Infections, Ocular Infections, Soft Tissue Infections of the Head and Neck, Upper Respiratory Infections, Lower Respiratory Tract infections, Infections of the Gastrointestinal Tract, Intraabdominal Infections, Bone and Joint Infections, Urinary Tract Infections, Genital Infections, and Skin and Soft Tissue Infections; or into etiologic agent groups, including Tickborne Infections, Viral Syndromes, and Blood and Tissue Parasite Infections. Each section contains introductory concepts, a summary of key points, and detailed tables that list suspected agents; the most reliable tests to order; the samples (and volumes) to collect in order of preference; specimen transport devices, procedures, times, and temperatures; and detailed notes on specific issues regarding the test methods, such as when tests are likely to require a specialized laboratory or have prolonged turnaround times. There is redundancy among the tables and sections, as many agents and assay choices overlap. The document is intended to serve as a reference to guide physicians in choosing tests that will aid them to diagnose infectious diseases in their patients.

Keywords. laboratory diagnosis; microbiology testing; specimen processing physician-laboratory communication; medical laboratories.

Clinical Infectious Diseases

Table Introduction-1. Transport Issues (General Guide)*

Specimen Type	Specimen Required	Collection Device, Temperature, and Ideal Transport Time
Aerobic bacterial culture	Tissue, fluid, aspirate biopsy, etc	Sterile container, RT, immediately
	Swab (2nd choice) – flocked swabs are recommended	Swab transport device, RT, 2 h
Aerobic and anaerobic bacterial culture	Tissue, fluid, aspirate, biopsy, etc	Sterile anaerobic container, RT, immediately
	Swab (2nd choice) – flocked swabs are effective	Anaerobic swab transport device, RT, 2 h
Fungus culture; AFB culture	Tissue, fluid, aspirate, biopsy, etc	Sterile container, RT, 2 h
	Swab (2nd choice) (for yeast and superficial mycobacterial infections only)	Swab transport device, RT, 2 h
Virus culture	Tissue, fluid, aspirate, biopsy, etc	Viral transport media, on ice, immediately
	Swab – flocked swabs are recommended	Virus swab transport device, RT, 2 h
Suspected agent of bioterrorism	Prevention website: I gov/documents	Disease Control and http://emergency.cdc. h/PPTResponse/ enselection.pdf
Serology	5 mL serum	Clot tube, RT, 2 h
Antigen test	As described in the laboratory specimen collection manual	Closed container, RT, 2 h
NAAT	5 mL plasma	EDTA tube, RT, 2 h
	Other specimen	Closed container, RT, 2 h

Received 19 April 2013; accepted 22 April 2013.

[&]quot;Although accurate and authoritative, IDSA considers adherence to the recommendations in this guide to be voluntary, with the ultimate determination regarding their application to be made by the physician in the light of each patient's individual

Correspondence: Ellen Jo Baron, PhD, Cepheid, R&D, 1315 Chesapeake Terrace, Surnyvale, CA 94089, USA (ejbaron@stanford.edu).

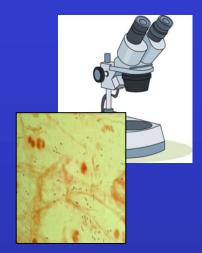
[©] The Author 2013. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, phase e-mail: journal/sporms-sione@outp.com. Dis-1th 10507-int-06-278.

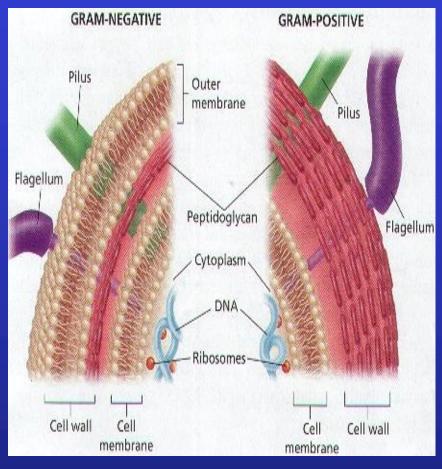
Basic Principles of Specimen Collection

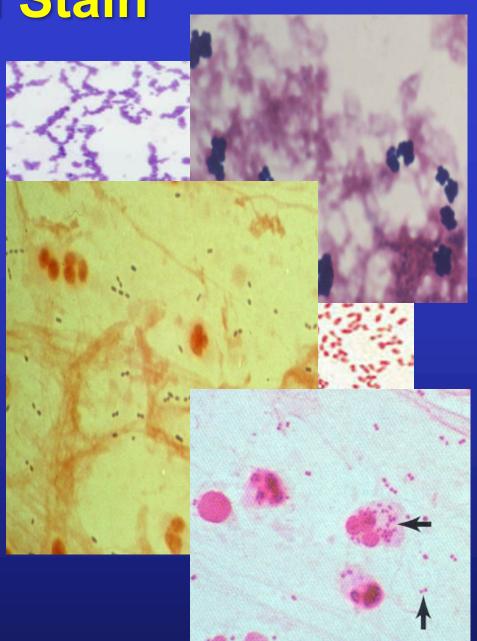
- Healthy, actively growing organisms (acute, pre-antibiotic)
- Minimize normal flora where you can (sputum, urine)
- Eliminate normal flora where you must (blood)
- <u>Tissue/Fluid is better than Swabs</u>

(and sometimes essential)

- More Swabs are better than Less Swabs
- Sooner is always better
- Use the right transport media
- Store at the right temperature







1 hr

Gram Stain

Antibiotic Therapies Gram Positive vs. Gram Negative

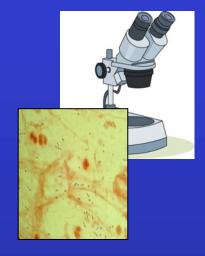
Table 4

Antimicrobial stewardship recommendations for the treatment of BSI caused by organisms identified by the FilmArray® BCID panel^a.

BCID result	No. positive BC sets ^b	Preferred therapy (alternative therapy)	Comments ^c
Staphylococcus; mecA negative or positive	1 of multiple	None, likely contaminant	If severely ill, consider antibiotic therapy until more results
Staphylococcus; mecA negative	2 or more	OXA 2 g q4h (CFZ 2 g q8h)	NA
Staphylococcus; mecA positive	2 or more	VAN 15 mg/kg q12h (DAP 6 mg/kg q24h)	NA
Staphylococcus aureus; mecA negative	1 or more	OXA 2 g q4h (CFZ 2 g q8h)	NA
Staphylococcus aureus; mecA positive	1 or more	VAN 15 mg/kg q12h (DAP 6 mg/kg q24h)	NA
Streptococcus	1 of multiple	None, likely contaminant	If severely ill, consider antibiotic therapy until more results
Streptococcus	2 or more	CRO 2 g q24h	NA
Streptococcus pyogenes, S. agalactiae	1 or more	PEN 3 million units q4h (AMP 2 g IV q4h; CRO 2 g IV q24h)	Beta-hemolytic streptococci are routinely susceptible to PEN
Streptococcus pneumoniae (non-CNS)	1 or more	PEN 3 million units q4h (AMP 2 g IV q4h)	NA
Streptococcus pneumoniae (CNS)	1 or more	CRO 2 g q12h and VAN 15 mg/kg q12h	Continue VAN until susceptibilities are available
Enterococcus; vanA/B negative	1 or more	VAN 15 mg/kg q12h	NA
Enterococcus; vanA/B positive	1 or more	LZD 600 mg q12h (DAP 6-8 mg/kg q24h)	DAP is less active than LZD
Listeria monocytogenes	1 or more	AMP 2 g q4h	Consider SXT for individuals with beta-lactam allergies
Enterobacteriaceae (only)	1 or more	TZP 4.5 g q8h over 4 h (FEP 1 g q6h)	Consider stopping non-beta lactam if on combination therapy
Escherichia coli	1 or more	CRO 2 g q24h (ERT 1 g q24h; for severely ill)	CRO, 97% susceptible; ERT, 99% susceptible
Klebsiella pneumoniae	1 or more	CRO 2 g q24h	CRO, 98% susceptible
Klebsiella oxytoca	1 or more	ERT 1 g q24h (CRO and TZP)	ERT, 100% susceptible, CRO and TZP, 88% susceptible
Serratia marcescens	1 or more	CRO 2 g q24h (FEP 1 g q6h)	CRO, 96% susceptible; FEP, 99% susceptible
Enterobacter cloacae complex	1 or more	FEP 1 g q6h (ERT 1 g q24h; for severely ill)	FEP, 90% susceptible; ERT, 99% susceptible
Proteus	1 or more	CRO 2 g q24h	CRO, 98% susceptible
Acinetobacter baumannii	1 or more	MEM 500 mg q6h \pm GEN 7 mg/kg daily	MEM, 92.5% susceptible, consider adding GEN for severely ill
Pseudomonas aeruginosa	1 or more	TZP 4.5 g q8h over 4 h \pm TOB 7 mg/kg daily	TZP, 92.5% susceptible; consider adding TOB for severely ill
Neisseria meningitidis	1 or more	PEN 4 million units q4h (CRO 2 g q12h)	NA
Haemophilus influenzae	1 or more	SAM 3 g q6h (CRO 2 g q24h)	NA
Candida albicans	1 or more	FLC 800 mg load, 400 mg dailyd	93% susceptible; 3% susceptible dose-dependent
Candida parapsilosis	1 or more	FLC 800 mg load, 400 mg dailyd	91% susceptible; 6% susceptible dose-dependent
Candida glabrata, C. krusei, C. tropicalis	1 or more	MFG 100 mg q24h	99-100% susceptible
mecA	1 or more	VAN 15 mg/kg q12h	Marker for methicillin-resistant Staphylococcus
vanA/B	1 or more	LZD 600 mg q12h	Marker for VAN-resistant Enterococcus
bla _{KPC}	1 or more	Consult Infectious Disease Service; COL ± TGC	Marker for carbapenem-resistant Enterobacteriaceae

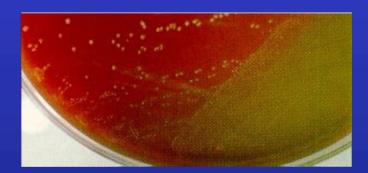
GP

GN


Timeline

1 hr

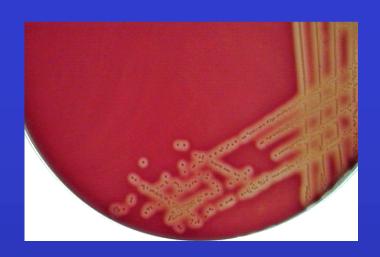
~18 hrs

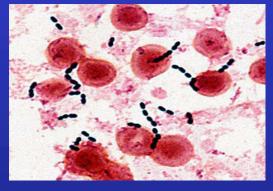

β-hemolysis

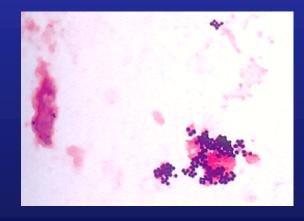
Sheep's Blood Agar Plates

α-hemolysis

γ-hemolysis

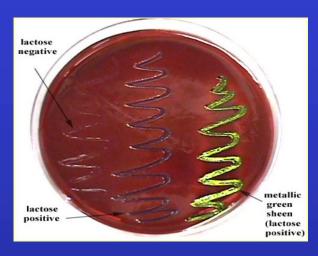





Streptococcus pyogenes

Enterococcus spp.

Staphylococcus epidermidis


Selective Differential Media

E.coli O157:H7

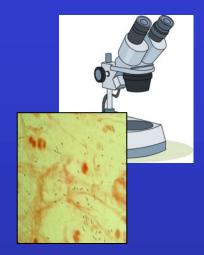
Clostridium difficile

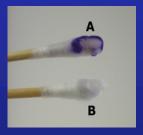
Enterobacteriaceae

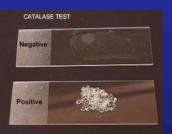
Salmonella spp./Shigella spp.

Bacteriodes spp.

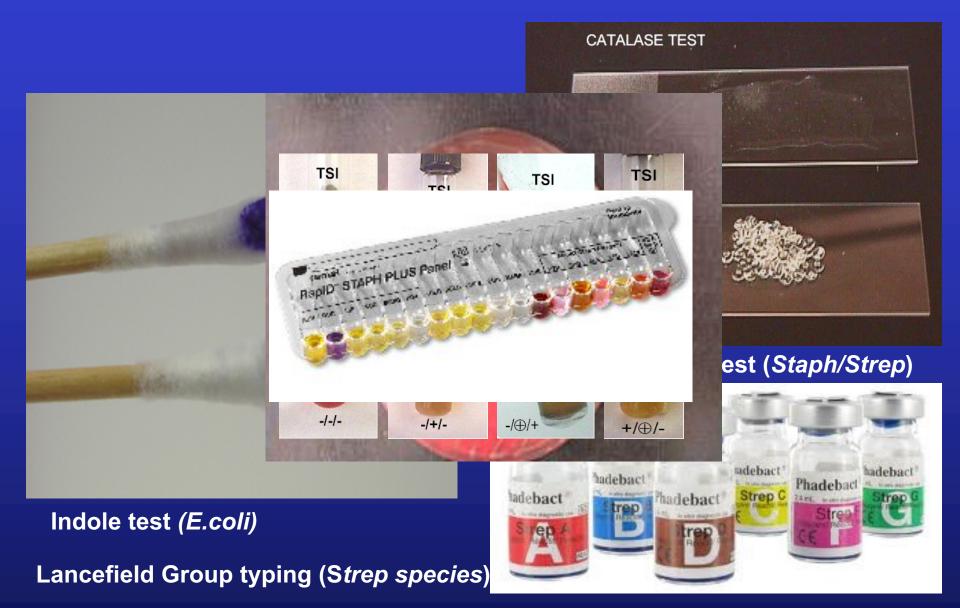
Yersinia spp. (i.e. Plague)


Timeline




1 hr

~18 hrs



Biochemically-Based Identification Methods

Automated Biochemical Systems

- Identification <u>and</u>
 Susceptibilities
- ID based on biochemical profile
- Antibiotic breakpoints based on CLSI standards
- Some susceptibilities reported out as standard, some withheld and reported out by exception

Examples:

- Biomerieux Vitek
- Becton Dickinson Pheonix
- Beckman Coulter MicroScan

- Pure culture required
- ~18 hour cycle

Laboratory Diagnosis

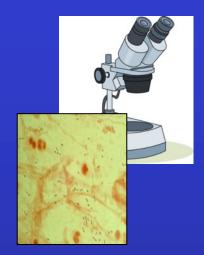
- Biochemical Tests
 - Triple Sugar Iron Agar / Kligler Iron Agar
 - Indole production
 - Methyl Red test
 - Voges-Proskauer test
 - Citrate utilization
 - Nitrate reduction
 - Urease production
 - Oxidase activity
 - Carbohydrate fermentation (Adonitol, Arabinose, Inositol, Sucrose)
 - Decarboxylation of Lysine, Ornithine, and Arginine (amino acids)
 - Phenylalanine Deaminase production
 - o-Nitrophenyl-β-D-galctopyranoside (ONPG)
 - Tests for β-galactosidase; helpful in identifying late lactose fermenters
 - Hydrogen Sulfide production
 - Motility

Make up the 13-tube biochemical ID panel

Biochemical Testing

	LF?	Motility	Indole	Methyl Red	Voges Proskauer	H ₂ S	Citrate	Urease
K. pneumoniae	Yes	-	-	-	+	-	+	+
K. oxytoca	Yes	-	+	-	+	-	+	+
Y. pestis	No	-	-	+	-	-	-	-
Y. enterocolitica	No	+ (25 C)	V(50%)	+	-	-	-	+
E. coli	Yes	+	+	+	-	-	-	-
Shigella	No	-	-/+	+	-	-	-	-
Salmonella	No	+	-	+	-	+	+	-
S. Typhi	No	+	-	+	-	+ (wk)	-	-
P. mirabilis	No	+ (sw.)	-	+	-	+	+/-	++
P. vulgaris	No	+ (sw.)	+	+	-	+	-	++

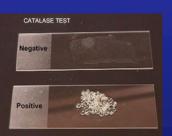
Ashex © 2004-2018 Non-Fermenter ID Matrix:	Motility	Oxidase	Catalase	Yellow Pig F	Pink Pigm E	Beta Hemo	Growth on	DNase	Starch	Lecithinas	Lipase	PYR	LAP	ESC Spot
Achromobacter denitrificans	99.00	99.00	99.00	1.00	1.00	16.67	99.00	1.00	1.00	1.00	1.00	55.56	99.00	1.00
Achromobacter piechaudii	78.57	99.00	99.00	1.00	1.00	14.29	99.00	1.00	1.00	1.00	1.00	50.00	99.00	1.00
Achromobacter xylosoxidans	87.50	99.00	99.00	1.00	1.00	1.56	99.00	1.00	1.00	1.00	1.00	78.72	99.00	1.00
Acidovorax temperans	99.00	99.00	99.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	99.00	99.00	
Acinetobacter baumannii complex	1.00	1.00	99.00	1.00	1.00	1.00	99.00	1.00	1.00	1.00	27.27	10.00	99.00	1.00
Acinetobacter haemolyticus	1.00	1.00	99.00	1.00	1.00	99.00	99.00	1.00	1.00	1.00	99.00	1.00		
Acinetobacter Iwoffii	1.00	1.00	99.00	1.00	1.00	1.00	82.61	1.00	1.00	1.00	1.00	22.22	99.00	1.00
Acinetobacter species saccharolytic	50.00	1.00	99.00	1.00	1.00	99.00	99.00	1.00	1.00	1.00	99.00	50.00	50.00	50.00
Alcaligenes faecalis	99.00	99.00	99.00	1.00	1.00	1.00	99.00	1.00	1.00		1.00	1.00		
Bergeyella zoohelcum	1.00	83.33	50.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00		
Bordetella avium	99.00	99.00	99.00	1.00	1.00	1.00	99.00	1.00	1.00	1.00	1.00	99.00	99.00	1.00
Bordetella bronchiseptica	84.21	99.00	99.00	1.00	1.00	1.00	99.00	1.00	1.00	1.00	1.00	22.22	99.00	
Bordetella hinzii	99.00	99.00	50.00	50.00	1.00	1.00	99.00	1.00	1.00	1.00	1.00	1.00	99.00	1.00
Bordetella holmesii	1.00				1.00	1.00	1.00	1.00	1.00		1.00	1.00		
Bordetella parapertussis	1.00				1.00	1.00	1.00	1.00	1.00		1.00	1.00		1.00
Bordetella trematum	99.00				1.00	1.00	99.00	1.00	1.00		1.00	20.00		1.00
Brevundimonas diminuta	99.00				1.00	1.00	92.86	1.00	1.00		1.00	1.00		1.00
Brevundimonas vesicularis	99.00				1.00	8.33	46.67	6.67	66.67	1.00	1.00	28.57		42.86
Pandoraea apista	99.00				1.00	1.00	99.00	1.00	1.00		1.00	1.00		
Pseudomonas aeruginosa	67.92				1.89	73.91	99.00	9.43	24.53		30.43	34.21		1.00
Pseudomonas alcaligenes	99.00				1.00	1.00	88.89	1.00	1.00		1.00	99.00		11.11
Pseudomonas fluorescens	90.91	95.45			9.09	72.22	99.00	4.55	50.00		36.84	23.08		1.00
Pseudomonas luteola	99.00				1.00	1.00	92.31	15.38	53.85	1.00	1.00	1.00		99.00
Pseudomonas mendocina	99.00				8.33	1.00	99.00	1.00	16.67	1.00	33.33	1.00		
Pseudomonas oryzihabitans	99.00				1.00	8.33	99.00	1.00	64.71	1.00	1.00	36.36		1.00
Pseudomonas pseudoalcaligenes	69.23				1.00	1.00	99.00	1.00	7.69	1.00	1.00	1.00		1.00
Pseudomonas putida	99.00				1.00	15.38	99.00	1.00	25.00	3.70	3.70	1.00		1.00
Pseudomonas stutzeri	91.30				1.00	1.00	99.00	1.00	86.96		83.33	6.25		
Pseudomonas stutzeri (Vb-3)	99.00				16.67	1.00	99.00	1.00	99.00		99.00	50.00		50.00
Psychrobacter immobilis (asaccharolytic)	1.00				1.00	20.00	80.00	1.00	1.00		40.00	1.00		
Psychrobacter immobilis (saccharolytic)	1.00				1.00	20.00	99.00	1.00	1.00		60.00	1.00		1.00
Psychrobacter phenylpyruvicus	1.00				1.00	1.00	80.00	1.00	1.00		33.33	1.00		1.00
Ralstonia mannitolilytica	99.00 78.57				1.00 1.00	1.00	71.43 57.14	1.00 1.00	14.29 35.71	1.00 1.00	42.86 70.00	28.57 55.56		1.00 10.00
Ralstonia pickettii (Va-1) Ralstonia pickettii (Va-2)	99.00				1.00	1.00	1.00	1.00	1.00		60.00	20.00		1.00
Rhizobium (Agrobacterium) radiobacter	99.00 84.62				1.00	33.33	72.73	1.00	1.00		1.00	99.00		33.33
Roseomonas species	15.38				99.00	1.00	7.69	1.00	69.23		1.00	14.29		1.00
Shewanella algae	99.00				16.67	25.00	99.00	99.00	1.00		75.00	66.67		
Shewanella putrefaciens	80.00				20.00	1.00	99.00	99.00	1.00		1.00	1.00		1.00
Sphingobacterium multivorum	50.00				1.00	20.00	99.00	16.67	83.33		60.00	80.00		40.00
Sphingobacterium spiritivorum	1.00				1.00	1.00	1.00	99.00	1.00		1.00	1.00		99.00
Sphingobacterium sphilivorum Sphingobacterium thalopophilum	1.00				1.00	50.00	99.00	99.00	99.00		50.00	50.00		
Sphingomonas paucimobilis	50.00				1.00	41.67	5.00	25.00	75.00	1.00	1.00	1.00		99.00
Stenotrophomonas maltophilia	88.00				1.00	22.50	96.00	82.00			71.11	1.00		97.44
Sichoropholiolias Ilianophilia	00.00	20.00	34.00	30.00	1.00	22.30	30.00	02.00	1.00	1.00		1.00	34.07	31.44


Timeline

1 hr

1 hr


Total time to ID: ~48 hours

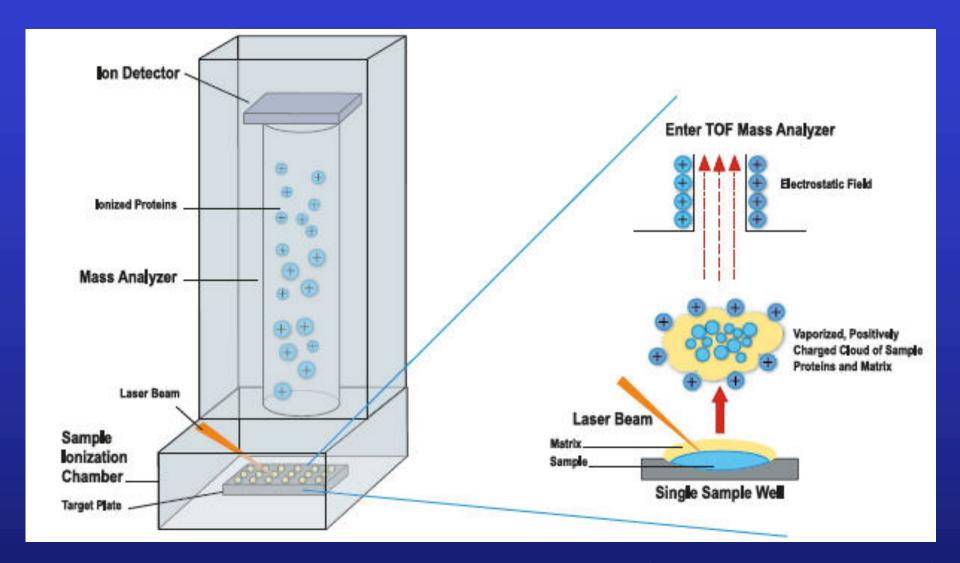

Total time to antibiotic profile: ~48 hours

~24 hrs

Antibiotic Therapies Knowing the species matters

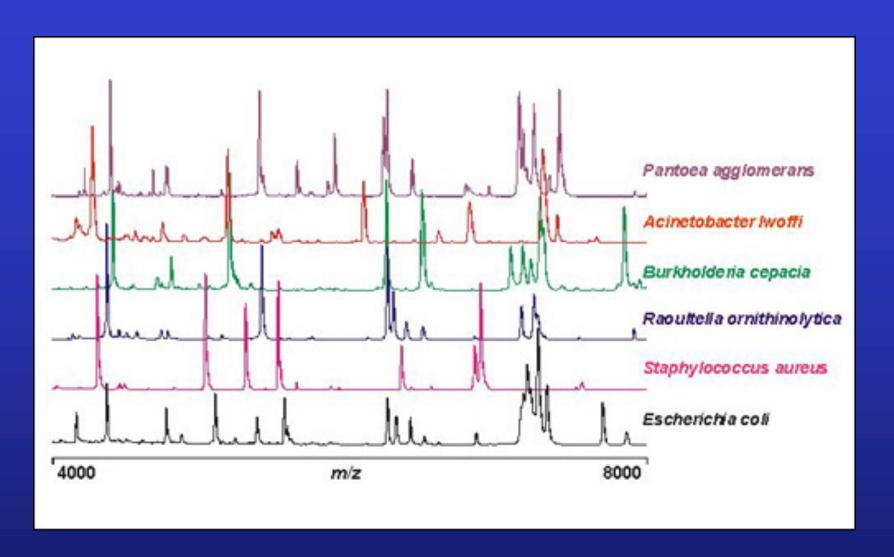
Table 4

Antimicrobial stewardship recommendations for the treatment of BSI caused by organisms identified by the FilmArray® BCID panel*.


BCID result	No. positive BC sets ^b	Preferred therapy (alternative therapy)	Comments ^c
Staphylococcus; mecA negative or	1 of multiple	None, likely contaminant	If severely ill, consider antibiotic therapy until more
positive			results
Staphylococcus; mecA negative	2 or more	OXA 2 g q4h (CFZ 2 g q8h)	NA
Staphylococcus; mecA positive	2 or more	VAN 15 mg/kg q12h (DAP 6 mg/kg q24h)	NA
Staphylococcus aureus; mecA negative	1 or more	OXA 2 g q4h (CFZ 2 g q8h)	NA
Staphylococcus aureus; mecA positive	1 or more	VAN 15 mg/kg q12h (DAP 6 mg/kg q24h)	NA
Streptococcus	1 of multiple	None, likely contaminant	If severely ill, consider antibiotic therapy until more results
Streptococcus	2 or more	CRO 2 g q24h	NA
Streptococcus pyogenes, S. agalactiae	1 or more	PEN 3 million units q4h (AMP 2 g IV q4h; CRO 2 g IV q24h)	Beta-hemolytic streptococci are routinely susceptible PEN
Streptococcus pneumoniae (non-CNS)	1 or more	PEN 3 million units q4h (AMP 2 g IV q4h)	NA
Streptococcus pneumoniae (CNS)	1 or more	CRO 2 g q12h and VAN 15 mg/kg q12h	Continue VAN until susceptibilities are available
Enterococcus; vanA/B negative	1 or more	VAN 15 mg/kg q12h	NA
Enterococcus; vanA/B positive	1 or more	LZD 600 mg q12h (DAP 6-8 mg/kg q24h)	DAP is less active than LZD
Listeria monocytogenes	1 or more	AMP 2 g q4h	Consider SXT for individuals with beta-lactam allergie
Enterobacteriaceae (only)	1 or more	TZP 4.5 g q8h over 4 h (FEP 1 g q6h)	Consider stopping non-beta lactam if on combination therapy
Escherichia coli	1 or more	CRO 2 g q24h (ERT 1 g q24h; for severely ill)	CRO, 97% susceptible; ERT, 99% susceptible
(lebsiella pneumoniae	1 or more	CRO 2 g q24h	CRO, 98% susceptible
Klebsiella oxytoca	1 or more	ERT 1 g q24h (CRO and TZP)	ERT, 100% susceptible, CRO and TZP, 88% susceptible
Serratia marcescens	1 or more	CRO 2 g q24h (FEP 1 g q6h)	CRO, 96% susceptible; FEP, 99% susceptible
Enterobacter cloacae complex	1 or more	FEP 1 g q6h (ERT 1 g q24h; for severely ill)	FEP, 90% susceptible; ERT, 99% susceptible
Proteus	1 or more	CRO 2 g q24h	CRO, 98% susceptible
Acinetobacter baumannii	1 or more	MEM 500 mg q6h \pm GEN 7 mg/kg daily	MEM, 92.5% susceptible, consider adding GEN for severely ill
Pseudomonas aeruginosa	1 or more	TZP 4.5 g q8h over 4 h \pm TOB 7 mg/kg daily	TZP, 92.5% susceptible; consider adding TOB for severe ill
Neisseria meningitidis	1 or more	PEN 4 million units q4h (CRO 2 g q12h)	NA
Jaemophilus influenzae	1 or more	SAM 3 g q6h (CRO 2 g q24h)	NA
Candida albicans	1 or more	FLC 800 mg load, 400 mg dailyd	93% susceptible; 3% susceptible dose-dependent
Candida parapsilosis	1 or more	FLC 800 mg load, 400 mg daily	91% susceptible; 6% susceptible dose-dependent
Candida glabrata, C. krusei, C. tropicalis	1 or more	MFG 100 mg q24h	99-100% susceptible
necA	1 or more ^e	VAN 15 mg/kg q12h	Marker for methicillin-resistant Staphylococcus
vanA/B	1 or more	LZD 600 mg q12h	Marker for VAN-resistant Enterococcus
bla _{KPC}	1 or more	Consult Infectious Disease Service; COL ± TGC	Marker for carbapenem-resistant Enterobacteriaceae

Matrix Assisted Laser Desorption Ionization-Time Of Flight (MALDI-TOF)

- Protein-based identification
- Accuracy comparable to Nucleic Acid Sequencing
 - >98% accuracy compared to 16S RNA sequencing
- Much faster than traditional methods
 - ~200 IDs an hour from a pure colony (requires initial culturing)
- Cost effective (with large initial capital investment)
 - Less than a dollar per test
- Two commercially-available, FDA-approved platforms
 - Bruker MS Biotyper
 - Biomerieux Vitek MS



MALDI-TOF

- Measures highly abundant proteins found in all organisms (ex. 16S Ribosomal proteins)
 - Creates a spectra fingerprint to compare against a database of known organisms

MALDI-TOF

- Measures highly abundant proteins found in all organisms (ex. 16S Ribosomal proteins)
 - Creates a spectra fingerprint to compare against a database of known organisms

MALDI-TOF

Analyte1

Analyte Name:

Analyte Description:

Analyte ID:

Analyte Creation Date/Time:

Applied MSP Library(ies):

Applied Taxonomy Tree:

Rank (Quality)	Matched Pattern	Score Value	NCBI Identifier
1 (++)	Pseudomonas aeruginosa ATCC 27853 THL	2.237	287
2 (++)	Pseudomonas aeruginosa DSM 50071T HAM	2.191	287
3 (++)	Pseudomonas aeruginosa 8147_2 CHB	2.118	287
4 (++)	Pseudomonas aeruginosa DSM 1117 DSM	2.108	287
5 (+)	Pseudomonas aeruginosa 19955_1 CHB	1.908	287
6 (+)	Pseudomonas aeruginosa A07_08_Pudu FLR	1.901	287
7 (-)	Pseudomonas jinjuensis LMG 21316T HAM	1.619	198616
8 (-)	Pseudomonas indica DSM 14015T HAM	1.437	137658
9 (-)	Pseudomonas citronellolis DSM 50332T HAM	1.388	53408
10 (-)	Pseudomonas taetrolens LMG 2336T HAM	1.346	47884

National International

Version 1.0 Approved Organisms

Acinetobacter baumanii	Micrococcus luteus
Aeromonas hydrophilia	Moraxella catarrhalis
Aggregatibacter aphrophilus	Neisseria gonorrhoeae
Arcanobacteria pyogenes	Neisseria lactamica
Bacteroides fragilis	Peptostreptococcus asaccharolyticus
Bacteroides uniformis	Prevotella melaninogenica
Burkholderia cepacia	Propionibacterium acnes
Campylobacter jejuni	Proteus mirabilis
Clostridium perfringens	Pseudomonas aeruginosa
Clostridium sordelli	Serratia marcescens
Corynebacterium diptheriae	Staphylococcus aureus
Corynebacterium pseudodiptheriticum	Staphylococcus epidermidis
Eikenella corrodens	Staphylococcus lugdunensis
Enterobacter aerogenes	Staphylococcus saprophyticus
Enterobacter cloacae	Stenotrophomonas maltophilia
Enterococcus faecalis	Streptococcus agalactiae
Enterococcus faecium	Streptococcus constellatus
Enterococcus gallinarum	Streptococcus dysgalactiae
Escherichia coli	Streptococcus equi
Fusobacterium necrophorum	Streptococcus pneumoniae
Haemophilus influenzae	Streptococcus pyogenes
Klebsiella oxytoca	Streptococcus sanguinis
Klebsiella pneumoniae	

Version 2.0 had hundreds. Version 3.0 at FDA now...

Performance of Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry for Identification of Bacterial Strains Routinely Isolated in a Clinical Microbiology Laboratory[∇]

A. Bizzini, C. Durussel, J. Bille, G. Greub,†* and G. Prod'hom†*

Institute of Microbiology, University of Lausanne, and University Hospital Center, Lausanne, Switzerland

Received 11 September 2009/Returned for modification 8 January 2010/Accepted 25 February 2010

Matrix-assisted laser desorption ionization—time of flight mass spectrometry (MALDI-TOF MS) has recently been introduced in diagnostic microbiology laboratories for the identification of bacterial and yeast strains isolated from clinical samples. In the present study, we prospectively compared MALDI-TOF MS to the conventional phenotypic method for the identification of routine isolates. Colonies were analyzed by MALDI-TOF MS either by direct deposition on the target plate or after a formic acid-acetonitrile extraction step if no valid result was initially obtained. Among 1,371 isolates identified by conventional methods, 1,278 (93.2%) were putatively identified to the species level by MALDI-TOF MS and 73 (5.3%) were identified to the genus level, but no reliable identification was obtained for 20 (1.5%). Among the 1,278 isolates identified to the species level by MALDI-TOF MS, 63 (4.9%) discordant results were initially identified. Most discordant results (42/63) were due to systematic database-related taxonomical differences, 14 were explained by poor discrimination of the MALDI-TOF MS spectra obtained, and 7 were due to errors in the initial conventional identification. An extraction step was required to obtain a valid MALDI-TOF MS identification for 25.6% of the 1,278 valid isolates. In conclusion, our results show that MALDI-TOF MS is a fast and reliable technique which has the potential to replace conventional phenotypic identification for most bacterial strains routinely isolated in clinical microbiology laboratories.

- Overall, ~93% success rate (2010 databases continually improving)
- Generally:
 - Gram negative identification easier, more successful than Gram positives
 - More common organisms more successful than less common organisms
 - Certain bacteria (Corynebacterium, Actinomycetes), Mycobacteria, Molds, Yeasts lagging behind others, but catching up
 - Lack of identification (poor database coverage) much, much more likely than misidentification
 - Exceptions in the case of several closely related species
 - NLF E. coli and Shigella
 - Streptococcus pneumoniae and Streptococcus mitis
 - Certain Select Agents

Evaluation of Matrix-Assisted Laser Desorption Flight Mass Spectrometry for Identification of Nocardia species, and Other Aerobic Actinon

Matrix-Assisted Desorption Ionization Time of Flight Mass Spectrometry for the Use with

Positive Blood Cultures: Methodology, Performance, and Optimization

S. P. Buckwalter, S. L. Olson, B. J. Connelly, B. C. Lucas, A. A. Rodning, R. C. Walchak,

Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rocheste

Matthew L. Faron 1, Blake W. Buchan 1,2 and Nathan A. Ledeboer 1,2

The value of matrix-assisted laser desorption ionization - time of flight mass spec

tion of bacteria and yeasts is well documented in the literature. Its utility for the id

spp. has also been 162 Mycobacteriu tes using both the performance of a ature report, our Following library 16S rRNA gene se actinomycetes iso able tool for the id rapidly identify sl

Microbial Drug Resistance

About This Journal...

Subscribe...

Buy Article...

bsitive

The use of spectromet smear-posi

Boaz Bisho Neuberger

PII:

DOI:

Reference:

A First Insight into Escherichia coli ST131 High-Risk Clone Among Extended-Spectrum Beta-Lactamase-Producing Urine Isolates in Istanbul with the Use of Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass-Spectrometry and Real-Time PCR

To cite this article:

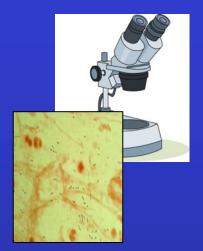
Aktaş Elif, Otlu Barış, Erdemir Duygu, Ekici Hatice, and Bulut Emin. Microbial Drug Resistance. May 2017, ahead of print. https://doi.org/10.1089/mdr.2017.0021

Online Ahead of Print: May 3, 2017

To appear in: Clinica

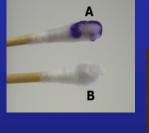
Bin Huang^{1,2,¶}, Lei Zhang^{4,¶}, Weizheng Zhang^{5,6}, Kang Liao¹, Shihong Zhang¹, Zhiquan Zhang⁷, Xingyan

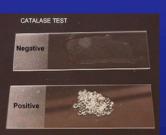
Ma¹, Jialong Chen⁸, Xiuhong Zhang⁹, Pinghua Qu^{5,6}, Shangwei Wu⁴, Cha Chen^{5,6,*}, and Yi-Wei Tang^{2,3,*}


Timeline

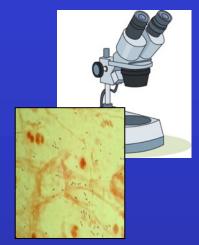
1 hr

1 hr


Total time to ID: ~48 hours


Total time to antibiotic profile: ~48 hours

~24 hrs


Timeline

1 hr

1 hr

~18 hrs

Total time to ID: ~24 hours

10 min

~24 hrs

Clinical Scenario #1

50 year old recently female retiree presents 1 year out from a right total knee replacement with worsening knee pain and mild swelling along with some night sweats. She is taken to the OR and the hardware is removed and sent down to the lab for culture... After 24 hours she has light growth of a short Gram negative rod growing only on the chocolate agar plate. MALDI identifies it as Haemophilus influenzae. She is treated with ceftriaxone for 6 weeks and her repeat cultures are negative and new hardware is placed and patient doing well to date.

What accreditation does your hospital use?