

July 8th, 2019

Announcements

- TASP Noon Session
- Cases!

July 8th, 2019

Agenda

• Didactic:

Extended-Spectrum Beta-Lactamases

Case Discussions

Antimicrobial Drug Resistance

What is it?

Non-specific term indicating that a microorganism is no longer susceptible to the antimicrobials typically used for that infection.

Associated with worse outcomes, longer LOS and increased costs

Examples...

- MRSA, VISA, VRSA
- VRE
- Extended-spectrum beta-lactamases (ESBLs)
- Carbapenem-resistant enterobacteriaceae, such as *E. coli, Salmonella, Klebsiella,* and *Shigella* spp.
- Multi-drug resistant tuberculosis (MDR-TB)
- Drug-resistant Neisseria gonorrhea

Definitions of Common Terms Used to Describe Resistant Gram-Negative Bacilli

	These antibiotics comprise the penicillins , cephalosporins and carbapenems, which share the common basic chemical structure of a 4-member β -lactam			
β-lactam antibiotics	ring.			
β-lactamases	bese enzymes hydrolyze the β -lactam ring and inactivate the β -lactam class intibiotics.			
Ambler classification	This is a classification system for β -lactamases on the basis of their amino acid sequences and their active site residue.			
Extended-spectrum β-lactamases (ESBLs)	These are broad-spectrum, Ambler class A β -lactamases, which hydrolyze the penicillins, and first- to fourth-generation cephalosporins, which are cefoxitin susceptible and are inhibited by the β -lactamase inhibitors (eg clavulanate).			
Cephalosporinases	ESBLs are technically cephalosporinases but the term cephalosporinase is generally reserved to describe Ambler class C AmpC β -lactamases, which are cefoxitin resistant, hydrolyze the penicillins and first to third-generation cephalosporins, and are not inhibited by the β -lactamase inhibitors, such as clavulanate.			
Carbapenemases	These are broad-spectrum β -lactamases (usually Ambler class A, B, or D), which have the ability to hydrolyze carbapenems, in addition to the penicillins and also the first- to fourth-generation cephalosporins, although activity may vary depending on the exact type of carbapenemase.			
Carbapenem-resistant gram-negative bacilli and carbapenem-resistant Enterobacteriaceae vs	CPGNB are most often CRGNB (susceptibility testing may yield rare isolates			
carbapenemase-producing gram- negative bacilli (CPGNB) and	and may have low carbapenem minimum inhibitory concentrations); however, not all CRGNB are carbapenemase producers. Carbapenem resistance may			
carbapenemase-producing	be mediated by ESBL or AmpC production, for example, associated with			
Enterobacteriaceae	porin loss. Vasoo, Mayo Clin Proc 2015			

ESBLS

- MOST IMPORTANT mechanism of resistance in GNRs
- First identified in Germany in 1983
- A family of enzymes (often on a plasmid) that degrade the beta-lactam ring of most penicillins and cephalosporins
 - Exceptions: carbapenems, cephamycins (cefoxitin), ceftolozane-tazobactam, ceftazidime-avibactam
- Main mechanism of resistance to 3rd generation cephalosporins like ceftriaxone, ceftazidime and cefotaxime

ARS: Which of the following genes encodes an ESBL?

- A. CTX-M
- B. SHV
- C. TEM
- D. OXA
- E. AmpC
- F. None of the above
- G. A through C

GNR Resistance Detection: ESBLS

ΜΟΑ	ESBL	
Location	Plasmid	
Bugs	E.coli, Klebsiella	
1 gen Ceph	R	
2 gen Ceph	S	
3 gen Ceph	R	
4 gen Ceph	R/S	
Cefotax + Clav	S	
Carbapenem	S	

- Organisms with ESBL genes often have other mechanisms of resistance (plasmids, transposons, etc)
- Incidence in the U.S. is rising

Rate of ESBL Phenotype in Escherichia coli and Klebsiella Species in 2009 and 2011

	2009	2011
E. coli in United States	11.9%	17.4%
<i>E. coli</i> in Europe	17.8%	20.3%
<i>Klebsiella</i> species in United States	16.2%	18.6%
<i>Klebsiella</i> species in Europe	27.5%	41.8%

Dynamed, 2016

ESBLs: Epidemiology

- Global epidemic
- Initially all/most were healthcare-acquired
- More recently, infections also coming from community
- Risk factors:
 - recurrent UTI
 - SNF/LTACH residence
 - Exposure to cephalosporins/fluoroquinolones
 - Older age

Comparison of the antimicrobial usage during the last 60 days prior to inclusion in the study population with and without ESBL-producing Enterobacteriaceae infection.

Antimicrobials	ESBL (n = 212)	Non-ESBL ($n = 2089$)	p Value
Aminoglycoside	18 (8.5)	25 (1.2)	<0.0001
Carbapenem	50 (23.6)	239 (11.4)	<0.0001
Cephalosporin			
First generation	11 (5.2)	161 (7.7)	0.184
Second generation	42 (19.8)	120 (5.7)	<0.0001
Third generation	19 (9 0)	200 (9.6)	0.7724
Fourth generation	64 (30.19)	61 (2.9)	<0.0001
Chloramphenicol	9 (4.3)	1 (0.1)	<0.0001
Cyclic lipopeptide	1 (0.5)	11 (0.5)	0.6951
Fosfomycin	5 (2.4)	12 (0.6)	0.0156
Fluoroquinolone	48 (22.6)	160 (7.7)	<0.0001
Glycopeptide	18 (8.5)	112 (5.4)	0.0601
Clindamycin	21 (9.9)	67 (3.2)	<0.0001
Macrolide	1 (0 5)	37 (1.8)	0.1213
Oxazolidinone	30 (14.2)	38 (1.8)	<0.0001
Penicillin	6 (2.8)	224 (10.7)	0.0003
Penem	2 (0.9)	9 (0.4)	0.2691
ST ^a	15 (71)	61 (29)	0.0013
Tetracycline	43 (20.3)	38 (1.8)	<0.0001
Antifungal agent	25 (11.8)	89 (4.3)	<0.0001

Ð

Import and spread of extended-spectrum β-lactamaseproducing Enterobacteriaceae by international travellers (COMBAT study): a prospective, multicentre cohort study

Maris S Arcilla*, Jarne M van Hattem*, Manon R Haverkate, Martin C J Bootsma, Perry J J van Genderen, Abraham Goorhuis, Martin P Grobusch, Astrid M Oude Lashof, Nicky Molhoek, Constance Schultsz, Ellen E Stobberingh, Henri A Verbrugh, Menno D de Jong, Damian C Melles, John Penders

In the COMBAT Study, what was the median time of colonization?

- A. 2-3 months
- B. 6 months
- C. 12 months
- D. 16 months
- E. 2-3 years
- F. Indefinitely

The number of antimicrobial usage between infectious patients with and without- ESBLproducing Enterobacteriaceae proceeding 60 days. The frequency of antimicrobial usage in infectious patients with ESBL-producing Enterobacteriaceae was higher than tha...

Treatment Options

- Carbapenems
- Fosfomycin
- Cetazidime-avibactam or cetolozanetazobactam
- Nitrofurantoin
- Aminoglycosides
- Tigecycline

References

Tal Jasper, R., Coyle, J. R., Katz, D. E. & Marchaim, D. The complex epidemiology of extended-spectrum β-lactamase-producing Enterobacteriaceae. *Future Microbiol.* **10**, 819–839 (2015).

D'Angelo, R. G., Johnson, J. K., Bork, J. T. & Heil, E. L. Treatment options for extended-spectrum beta-lactamase (ESBL) and AmpC-producing bacteria. *Expert Opin. Pharmacother.* **17**, 953–967 (2016).

Arcilla, M. S. *et al.* Import and spread of extended-spectrum β-lactamaseproducing Enterobacteriaceae by international travellers (COMBAT study): a prospective, multicentre cohort study. *Lancet Infect. Dis.* **17**, 78–85 (2017).

Nakai, H. *et al.* Prevalence and risk factors of infections caused by extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae. *J. Infect. Chemother.* **22**, 319–326 (2016).

