

# Markers of Infection: CRP, ESR and Procalcitonin

John Lynch, MD, MPH Associate Professor Harborview Medical Center & The University of Washington School of Medicine

March 14, 2017

URL: <u>http://rwpoll.com</u> Code: uwecho

This presentation is intended for educational use only, and does not in any way constitute medical consultation or advice related to any specific patient.



## Erythrocyte Sedimentation Rate (ESR)

- A non-specific marker of *inflammation*, including Autoimmune disorders (PMR, SLE) and some cancers (multiple myeloma)
- Measures the rate at which RBCs fall in a test tube
- Reported as the millimeters of plasma at the top portion of the tube after 1 hour (mm/hr) (available tests: Westergren, modified Westergren, micro-ESR)
- Represents elevation in globulins and/or fibrinogen = surrogate marker



#### What conditions can affect the ESR?

- A. Pregnancy
- B. Rheumatic fever
- C. Age
- D. Obesity
- E. Tube is cooled
- F. All of the above
- G. Only A and C



URL: <u>http://rwpoll.com</u> Code: uwecho

## Rouleaux of red blood cells.



Elaine S Ramsay, and Melissa A Lerman Arch Dis Child Educ Pract Ed 2015;100:30-36 Copyright © BMJ Publishing Group Ltd & Royal College of Paediatrics and Child Health. All rights reserved.







Abdullah Sarhan, commons.wikimedia.org

## **ESR: Normal Ranges**

- Newborn 0-2 mm/hr
- Newborn to puberty 3-13 mm/hr
- Women 0-29 mm/hr (goes up during pregnancy)
- Men 0-22 mm/hr
- 1951 study, 20-30yo mean 8.3 mm/hr, 70-80yo mean 18.3 mm/hr



#### ESR in Use

- Child refusing to weight a leg
  - Significant elevation (>40 mm/h) helpful
  - But better when combined with fever, sxs, CRP, leukocytosis
- Children with ESR ≥100 mm/hr
  - 49.5% infection
  - 26.3% connective tissue disease
  - 12.1% malignancy
  - 8.1% renal disease
- Cannot be used to rule-out a disease



#### A Proposed Algorithm for Spinal Epidural Abscess





Bond, Biomed Res Internal, 2016

#### A Proposed Algorithm for Spinal Epidural Abscess





Bond, Biomed Res Internal, 2016

#### C-reactive Protein (CRP)

- A specific protein (pentraxin family)
- More direct measure of inflammation
- Made in liver in reponse to IL1 beta, IL-6 and TNF-alpha
- In turn, activates neutrophils, NK cells and adhesins
- Exists as pentameric and monomeric forms
- Measured in a variety of ways, including analyzers, ELISA, and lateral flow assays



### CRP is Elevated in Which of The Following?

- A. Cardiovascular disease
- B. Pneumonia
- C. Trauma
- D. Viral infections
- E. Systemic lupus erythematosus
- F. Post-operative setting
- G. Only A, B and E
- H. All of the above

URL: http://rwpoll.com

Code: uwecho





Normal CRP <3 mg/dL (some assays can go lower)

| Clinical setting             | CRP concentration<br>increase (mg/L) |
|------------------------------|--------------------------------------|
| Mild inflammation and        | ~10-50                               |
| viral infections             |                                      |
| Active inflammation and      | 50-200                               |
| bacterial infection          |                                      |
| Severe infections and trauma | > 200                                |



De Carvalho, Acta Rheum Port, 2007

#### **CRP** as Predictor of CAP Mortality

Supplementary Table 7 Performance characteristics of C-reactive protein for predicting mortality in community-acquired pneumonia

| Author                                                                                                                | Year | Cut-off | n   | Mortality | TP | FP  | TN  | $\mathbf{FN}$ | Sensitivity     | Specificity     |
|-----------------------------------------------------------------------------------------------------------------------|------|---------|-----|-----------|----|-----|-----|---------------|-----------------|-----------------|
|                                                                                                                       |      | (mg/L)  |     | (%)       |    |     |     |               | (95% CI)        | (95% CI)        |
| Kolditz et al.                                                                                                        | 2010 | 181     | 58  | 10.3      | 4  | 31  | 21  | 2             | 0.67(0.22-0.96) | 0.40(0.27-0.55) |
| Courtais et al.                                                                                                       | 2013 | 102.4   | 109 | 8.2       | 5  | 32  | 68  | 4             | 0.56(0.21-0.86) | 0.68(0.58-0.77) |
| Horie et al.                                                                                                          | 2012 | 284.4   | 102 | 8.8       | 6  | 9   | 84  | 3             | 0.67(0.30-0.93) | 0.90(0.82-0.95) |
| Kim et al.                                                                                                            | 2011 | 143     | 424 | 13.6      | 35 | 137 | 229 | 23            | 0.60(0.47-0.73) | 0.63(0.57-0.68) |
| Salluh et al.                                                                                                         | 2011 | 214     | 90  | 15.5      | 7  | 18  | 58  | 7             | 0.50(0.23-0.77) | 0.76(0.65-0.85) |
| Lacoma et al.                                                                                                         | 2011 | 109.7   | 75  | 8         | 5  | 30  | 39  | 1             | 0.83(0.36-1.00) | 0.57(0.44-0.68) |
| de Jager et al.                                                                                                       | 2012 | 46      | 395 | 5.8       | 10 | 74  | 298 | 13            | 0.58(0.51-0.65) | 0.60(0.57-0.62) |
| ProCAP                                                                                                                |      | 114     | 302 | 12.5      | 26 | 140 | 124 | 12            | 0.68(0.51-0.82) | 0.47(0.41-0.53) |
| ProHOSP                                                                                                               |      | 153     | 925 | 5.4       | 27 | 446 | 429 | 24            | 0.53(0.38-0.67) | 0.49(0.46-0.52) |
| Abbreviations: CI, confidence interval; TP, true positive; FP, false positive; TN, true negative; FN, false negative. |      |         |     |           |    |     |     |               |                 |                 |



#### CRP as Predictor of CAP Mortality

| es of C-reactive protein for predicting mortanty in community-acquired pheumonia |           |       |               |               |               |                 |  |                 |   |
|----------------------------------------------------------------------------------|-----------|-------|---------------|---------------|---------------|-----------------|--|-----------------|---|
|                                                                                  | Mortality | TP    | $\mathbf{FP}$ | $\mathbf{TN}$ | $\mathbf{FN}$ | Sensitivity     |  | Specificity     |   |
|                                                                                  | (%)       |       |               |               |               | (95% CI)        |  | (95% CI)        |   |
|                                                                                  | 10.3      | 4     | 31            | 21            | 2             | 0.67(0.22-0.96) |  | 0.40(0.27-0.55) | Γ |
|                                                                                  | 8.2       | 5     | 32            | 68            | 4             | 0.56(0.21-0.86) |  | 0.68(0.58-0.77) |   |
|                                                                                  | 8.8       | 6     | 9             | 84            | 3             | 0.67(0.30-0.93) |  | 0.90(0.82-0.95) |   |
|                                                                                  | 13.6      | 35    | 137           | 229           | 23            | 0.60(0.47-0.73) |  | 0.63(0.57-0.68) |   |
|                                                                                  | 15.5      | 7     | 18            | 58            | 7             | 0.50(0.23-0.77) |  | 0.76(0.65-0.85) |   |
|                                                                                  | 8         | 5     | 30            | 39            | 1             | 0.83(0.36-1.00) |  | 0.57(0.44-0.68) |   |
|                                                                                  | 5.8       | 10    | 74            | 298           | 13            | 0.58(0.51-0.65) |  | 0.60(0.57-0.62) |   |
|                                                                                  | 12.5      | 26    | 140           | 124           | 12            | 0.68(0.51-0.82) |  | 0.47(0.41-0.53) |   |
|                                                                                  | 5.4       | 27    | 446           | 429           | 24            | 0.53(0.38-0.67) |  | 0.49(0.46-0.52) |   |
|                                                                                  |           | • . • |               | T /           |               | TNL C 1         |  |                 |   |

#### cs of C-reactive protein for predicting mortality in community-acquired pneumonia

sinve; FP, false positive; TN, true negative; FN, false negative.



#### **CRP:** Pros and Cons

- Strong predictor of abx rx for RTIs
- No difference in POC CRP use and clinical recovery
- Maybe a link between CRP and reduction in abx use?
- Cannot differentiate between bacterial and viral lower RTIs in children
- Cannot determine the microbial agent in acute bronchitis in adults
- Some evidence that high CRP is associated with severe RTI (pneumonia)



#### Why Order an ESR and a CRP?

#### CRP

- Direct measure of protein in the blood
- Rises acutely (4-6 hrs of onset)
- Falls quickly (w/in 24-48 hrs)
- Tighter correlation with acute inflammation
- ESR
  - Rises in 24-48 hrs
  - Slower decline may correlate with complete resolution
  - Better for some autoimmune conditions, ex. SLE



#### Procalcitonin

- Procalcitonin is the peptide precursor of calcitonin
- Normally undetectable in serum
- Detectable levels associated with a variety of conditions, but higher levels associated with immune response to bacterial bioburden, i.e. infection
- Driven down by IFN-gamma, so low in viral infections



#### **Procalcitonin and Differentiation**

- Community-acquired pneumonia
  - 545 ED pts, 372 classified as PNA
  - PCT >0.1 ng/mL, Sn 90%, Sp 59%
  - PCT >1 ng/mL, Sn 43%, Sp 96%
  - As accurate as ED physicians and CRP(?)
- ICU patients and pneumonia
  - 78 ICU pts with SIRS, 60 confirmed infected
  - PCT 1.1, Sn 97%, Sp 78%



#### Procalcitonin and Antimicrobial Duration

- Five randomized ICU-based trials
- Nobre study:
  - Antibiotics stopped when PCT level dropped >90% from baseline, after at least 3 or 5 days
  - Antibiotic duration and exposure decreased in PCT-guided groups
  - Mortality, relapse and hospital LOS similar
  - ICU LOS in PCT group shortened by 2 days
- Use of PCT as guide = reduced costs



#### PCT as COPD Biomarker



FIGURE 3 PCT-guided treatment on antibiotic prescriptions in patients with AECOPD



FIGURE 4 PCT-guided treatment on mortality in patients with AECOPD

|                                                                                | PCT    |       | T Control |       |        | Peto Odds Ratio     |      | Peto Odds Ratio    |        |
|--------------------------------------------------------------------------------|--------|-------|-----------|-------|--------|---------------------|------|--------------------|--------|
| Study or Subgroup                                                              | Events | Total | Events    | Total | Weight | Peto, Fixed, 95% Cl |      | Peto, Fixed, 95% ( |        |
| Christ-Crain 2004                                                              | 5      | 29    | 4         | 31    | 22.6%  | 1.40 [0.34, 5.70]   |      |                    |        |
| Schuetz 2009                                                                   | 4      | 115   | 5         | 113   | 25.2%  | 0.78 [0.21, 2.95]   |      |                    |        |
| stolz 2007                                                                     | 5      | 102   | 9         | 106   | 38.1%  | 0.57 [0.19, 1.67]   |      |                    |        |
| Verduri 2015                                                                   | 3      | 93    | 2         | 90    | 14.2%  | 1.46 [0.25, 8.57]   |      |                    | _      |
| Total (95% CI)                                                                 |        | 339   |           | 340   | 100.0% | 0.86 [0.44, 1.68]   |      | ( + )              |        |
| Total events                                                                   | 17     |       | 20        |       |        |                     |      |                    |        |
| Heterogeneity: Chi <sup>2</sup> = 1.39, df = 3 (P = 0.71); l <sup>2</sup> = 0% |        |       |           |       |        |                     |      |                    |        |
| Test for overall effect: Z = 0.44 (P = 0.66)                                   |        |       |           |       |        |                     | 0.01 | PCT control        | 10 100 |

FIGURE 5 PCT-guided treatment on clinical success in patients with AECOPD



### **Other Serum Biomarkers**

- Complement
- Ferritin
- Fibrinogen
- Serum amyloid A
- Plasma viscosity
- Alpha-defensin
- Human beta-defensin-2 and -3
- Leukocyte esterase
- Cathelicidin LL-37

Albumin (goes down with inflammation



