

April 2, 2024

PK/PD

• Zahra Kassamali Escobar, PharmD

- Defining Terms
- **PK/PD Dosing Principles**
- Application: Obesity

		0	٦
	\mathbf{V}	_	
		_	
L		_	
			Ī

Defining Terms: Pharmacokinetics

Defining Terms: Pharmacodynamics

What the drug does (in relation to the body)

Efficacy of Antibiotics is directly related to how we dose them

Defining Terms: Pharmacodynamics

What the drug does (in relation to the body)

PK/PD Dosing Principles: Managing antibiotic dose in relation to bacteria

What the drug does (in relation to the body)

AUC = Area under the curve, MIC = Minimal inhibitory concentration, T = Time

Santos Filho L et al. Braz J Microbiol. 2007 Apr/June;38(2):183-193. Meagher AK et al. Antimicrob Agents Chemother. 2007 Jun;51(6):1939-45.

PK Practical Applications: Dosing in Obese Patients – Bigger Volume

ADME & Obesity: Pharmacokinetics

What the body does (in relation to the drug)

DISTRIBUTION:

METABOLISM:

ELIMINATION:

PK Practical Applications: Dosing in Obese Patients – Bigger Volume of Distribution

- ✓ Hydophilic/ Hydrophobic
- ✓ Drug delivery system
- ✓ Mechanism of action

Meng L et al. Pharmacotherapy 2017;37(11):1415–1431) doi: 10.1002/phar.

What does Bigger volume of distribution mean? Give the first dose based on total body weight

ADME and Obesity: Pharmacokinetics

What the body does (in relation to the drug)

DISTRIBUTION:

METABOLISM: 🕜

ELIMINATION:

letabolism and Obesity:

Impact of Obesity on Drug Metabolism and Elimination in Adults and Children

Margreke J.E. Brill,^{1,2} *Jeroen Diepstraten*,¹ *Anne van Rongen*,¹ *Simone van Kralingen*,³ *John N. van den Anker*^{4,5} and *Catherijne A.J. Knibbe*^{1,2}

Clearance of cytochrome P450 (CYP) 3A4 substrates is lower in obese as compared with non-obese patients. In contrast, clearance of drugs primarily metabolized by uridine diphosphate glucuronosyltransferase (**UGT**), glomerular filtration and/or tubular-mediated mechanisms, xanthine oxidase, N-acetyltransferase or CYP2E1 appears higher in obese versus non-obese patients. Additionally, in obese patients, trends indicating higher clearance values were seen for drugs metabolized via CYP1A2, CYP2C9, CYP2C19 and **CYP2D6**, while studies on high-extraction-ratio drugs showed somewhat inconclusive results.

Metabolism and Obesity:

ADME and Obesity: Pharmacokinetics

What the body does (in relation to the drug)

DISTRIBUTION:

METABOLISM: 🕝

PK Practical Applications: Dosing in Obese Patients – Is there greater clearance?

(**)**

Big Human = Big Beans

517

✓ Increased renal blood flow

✓ Increased GFR

✓ Increased kidney mass

Predicting Clearance Scenario 1 – the athlete

Predicting Clearance Scenario 2

Predicting Clearance Scenario 3- Obese and Comorbid

How do I predict Clearance? The same way you always have, carefully & clinically

How to adjust clinical practice?

Drug/Class	PK Change	Dosing Suggestions
Piperacillin/tazobactam	↑ Vd↑ Clearance	Prolonged infusion strategies
Cefazolin (surgical prophy)	1 Vd	Higher doses (3g) in patients ≥120kg
Levofloxacin	\Leftrightarrow	No change
Vancomycin	↑ Vd↑ Clearance	Therapeutic drug monitoring

Other Drugs? See this paper:

PHARMACOTHERAPY

Comprehensive Guidance for Antibiotic Dosing in Obese Adults

citations

Lina Meng,^{1,2*} Emily Mui,^{1,2} Marisa K. Holubar,^{2,3} and Stan C. Deresinski^{2,3}

Resource: Stanford obesity dosing guide

https://med.stanford.edu/content/dam/sm/bugsanddrugs/documents/antimicrobial-dosing-protocols/SHC-ABX-Obesity-Dosing-Guide.pdf

Table 1.^{1,153} Recommended Antibiotic Dosing in Obesity (BMI ≥ 30 kg/m²)

Drug		Dose ^a	Study Type ^b		e	Comments
			Case studies	PK/PD studies	Clinical outcomes	
Acyclovir ^{146-148, 162}	Use ide	al or adjusted body weight		•	•	 PK study: 5mg/kg IV x1 showed that dosin based on IBW in obese patients led to lov AUC than dosing by TBW in normal-weigh patients. Authors suggest using AdjBW Renal function may be a more important consideration than weight-based dosing in obese patients No difference in AKI rates with AdjBW compared to IBW dosing¹⁶²
Amoxicillin ± clavulanate	Amoxici Amoxici 875mg/ 2000mg	llin: 1g PO every 8 hours llin/clavulanate: 125mg PO every 8 hours or /125mg XR PO BID		•		
Cefazolin ¹⁵⁻²¹		Insufficient data	•	•	•	 Consider upper limit of normal dosing in severe infections, e.g. up to 2 g q8h (option for continuous infusion)²², or 1.5-2 g q6h intermittent dosing In post-trauma critically ill patients, data suggests 2g q6h if CrCl > 215 ml/min.²³

Does it matter? Sometimes

Summary

PK/PD Dosing Principles

To optimize antibiotic activity (i.e. pick a dose) consider -How the body acts on the drug (PK) -How the drug acts on the body/bacteria (PD).

Application: Obesity

Bigger volume = lower Cmax = ?potentially delayed onset of action or shorter duration of activity Bigger kidneys = higher CL if no comorbidities = shorter duration of activity

Dose Dosing Matter?

Sometimes in some people.

