
September 20th, 2022

Agenda

- Speaker: Antibiotics and Sepsis
 Zahra Kassamali-Escobar + Jeannie Chan
- Case Discussions
- Open Discussion

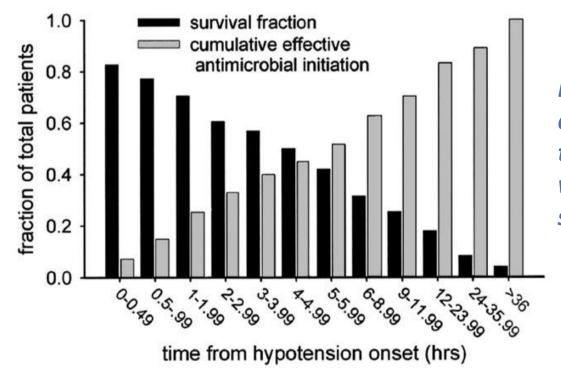
Sepsis- Early definition

Sepsis is the process by which flesh rots, swamps generate foul airs, and wounds fester

https://www.nejm.org/doi/full/10.1056/nejmra1208623

Early ^ Management

Make sacrifices to the goddess, Febris (Fever) - the goddess to dry up swamps and protect from malaria


Honey Sought by ancient Egyptians looking for materials that never decay as a wound salve

https://www.nejm.org/doi/full/10.1056/nejmra1208623 The Journal of Infectious Diseases Vol. 163, No. 5 (May, 1991), pp. 937-945

The importance of *Early* Antibiotic Therapy

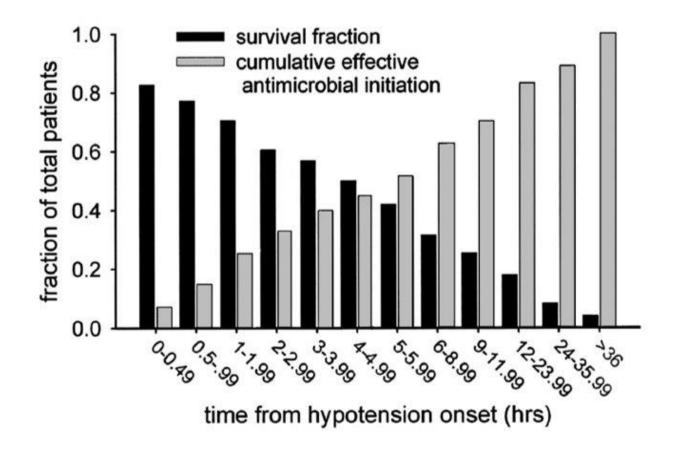
Each hour of delay in antimicrobial administration over the ensuing 6 hrs was associated with an average decrease in survival of 7.6%

Kumar A, Roberts D, Wood KE, et al. Crit Care Med 2006;34(6):1589-96.

But not ALL sepsis is septic Shock

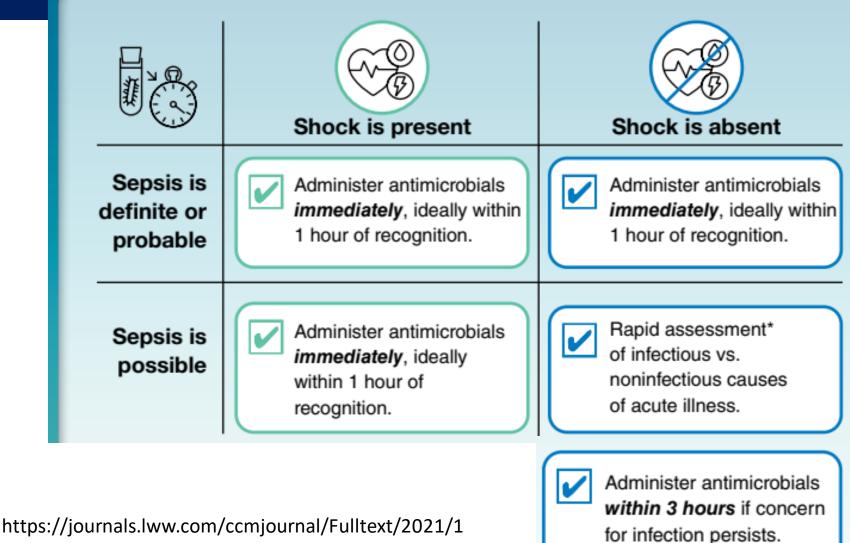
Specifications Manual for National Hospital Inpatient Quality Measures Discharges 01-01-18 (1Q18) through 06-30-18 (2Q18)

Severe Sepsis	Suspicion of infection + Signs of infection + Acute organ dysfunction
Septic Shock	Suspicion of infection + Signs of infection + Hypotension refractory to fluid resuscitation

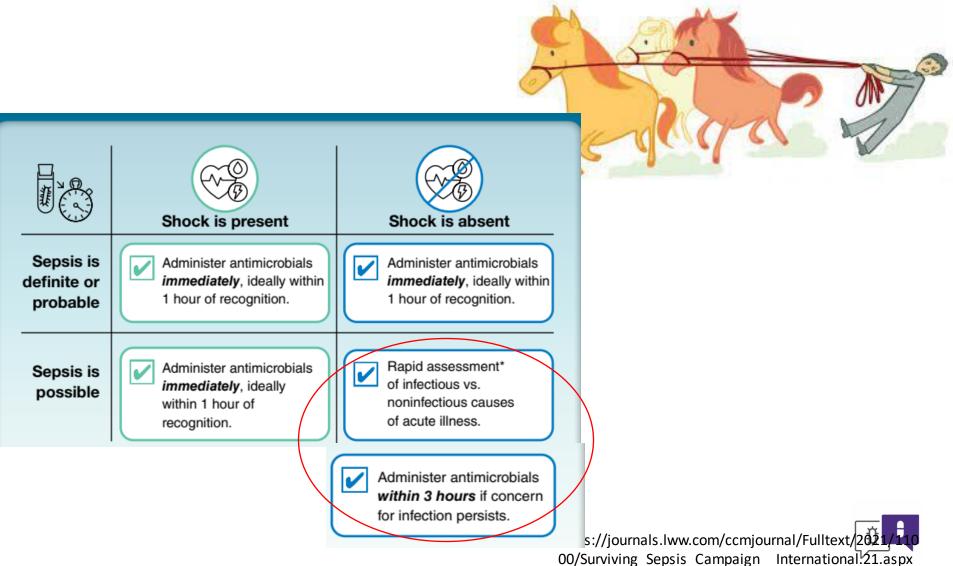

https://www.nejm.org/doi/full/10.1056/nejmra1208623

2021: New Surviving Sepsis Campaign Guidelines

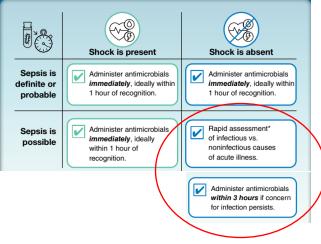
Specifies antibiotic decisions should be made in the context of patient presentation


https://journals.lww.com/ccmjournal/Fulltext/2021/11000/Surviving_Sepsis_Campaign__International 21.3 spx

Antibiotics for Septic Shock: Be Brisk, Be Broad


https://journals.lww.com/ccmjournal/Fulltext/2021/11000/Surviving_Sepsis_Campaign__International.21.asp

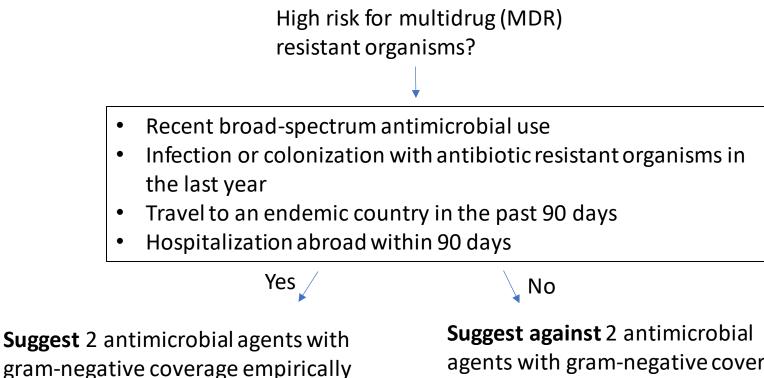
New Guidelines allow for nuance



1000/Surviving_Sepsis_Campaign__International.21.a

Whoa Nelly Window When to hold your horses to reassess infectious vs. noninfectious causes

Whoa Nelly Window Holding your Horses to reassess infectious vs. noninfectious causes


<u>Rapid assessment (ideally within 3 hours) =</u>

- History and clinical exam
- Tests for infectious and noninfectious causes of acute illness
- Immediate treatment of acute conditions that mimic sepsis

https://journals.lww.com/ccmjournal/Fulltext/2021/11000/Surviving_Sepsis_Campaign__Int ernational.21.aspx

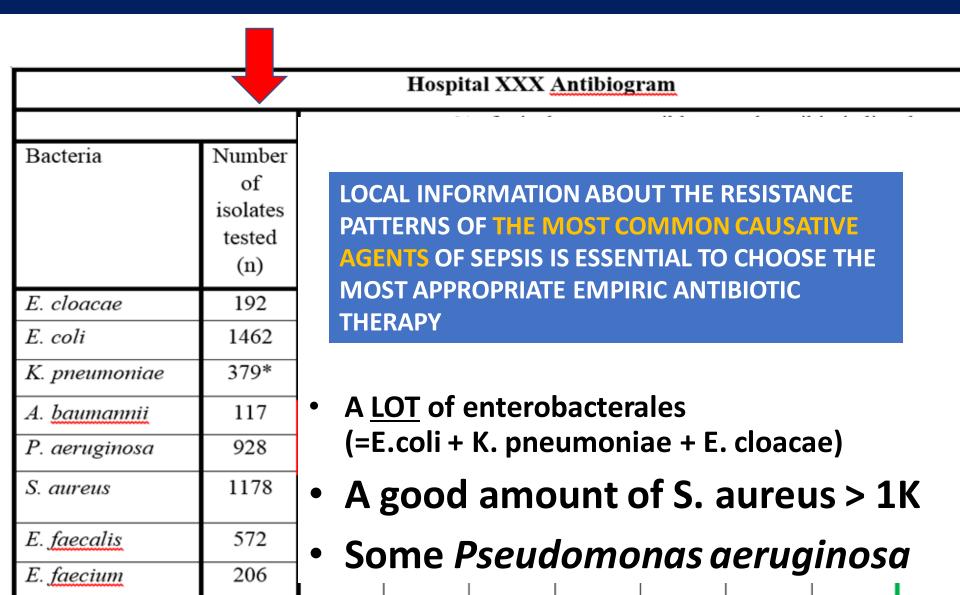
What Antibiotics to Start?

agents with gram-negative coverage empirically

Weak recommendation, very low quality of evidence

What Antibiotics to Start?

High risk for multidrug (MDR) resistant organisms?


Recent broad-spectrum antimicrobial use

LOCAL INFORMATION ABOUT THE RESISTANCE PATTERNS OF THE MOST COMMON CAUSATIVE AGENTS OF SEPSIS IS ESSENTIAL TO CHOOSE THE MOST APPROPRIATE EMPIRIC ANTIBIOTIC THERAPY

Weak recommendation, very low quality of evidence

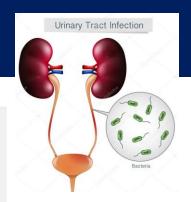
Q: Where to get your local information? A: The Antibiogram

Antibiotic selection: What about spectrum of coverage?

Antibiogram

Antibiotic Chart

Hospital XXX <u>Antibiogram</u>										
	% of n isolates susceptible to each antibiotic listed									
Bacteria	Number of isolates tested (n)	TOB	CFP	CTZ	PTZ	IMI	CIP	OXA	VAN	DAP
E. cloacae	192	65	77	66	79	96	85			
E. coli	1462	86	94	90	90	99	65			
K. pneumoniae	379*	78	80	79	86	97	81			
A. <u>baumannii</u>	117	63	61	57	69	73	66			
P. aeruginosa	928	65	73	71	88	76	44			
S. aureus	1178						44	41	100¥	100
E. <u>faecalis</u>	572								99	100
E. <u>faecium</u>	206								43	96
*20% of isolates a *23% of isolates h TOB = tobramycin CIP = ciprofloxad Example adapted : http://www.bugsy	ave vancom n; CFP = ce cin; OXA = from Utiliza	ycin MIC fepime: C oxacillin;	CTZ = cef VAN = 1	tazidime; vancomyo	cin; DAP	= dapton	iycin		= imipene	em;


		An	tibioti	c Suscepti	bility	Overview			
This chart is based on the	2020 UW Medic	ine antibiogram ()	80% suscept	ibility highlighted)	and is inten	ded to be used as init	tial guidance. It show	uld not replace clir	rical judgement
	tive Cocci				Gra	m Negative Bacilli			
Enterococcus RE faecalis N	IRSA MSSA	Streptococci	Proteus mirabilis	Klebsiella pneumoniae	E. coli	Pseudomonas	Acinetobacter	CEHMPS	Anaerobes
	Nafcilli	n, Dicloxacillin							
Penicillin		Penicillin							
Amax/Amp	Caland	Amox/Amp in, Cephalexin							
	Letazo	Clindamycin							Clindamycin (abs diaphragm)
	Rifampin								Metronidazola (below diaphrag
astid, amycin Vancomycin,	, Linezolid, Da	ptomycin							
	TMP/SMX								
	Doxyc	ycline							
		vofloxacin		Ciprofloxacin Levofloxacin		Ciprofloxacin Levofloxacin		Levofloxacin	
		xifloxacin		Levonoxacin		Levonoxacin		Levonoxacin	Moxifloxacin (ab diaphragm)
		Cefotaxime	, Ceftriaxo	ne, Cefuraxime					
					0	eftazidime			
					Cefepime	2			
Amp/sulbactam Amox/clavulan		npicillin/sulba toxicillin/clavu							Amp/sulbactan Amox/clavulana
Piperacillin/ tazobactam				cillin/tazobacta					Piperacillin/ tazobactam
			Mero	penem (less grar		overage compared to	ertapenem and imi	penem)	
Imipenem		Imipenem Ertapenem Ert							penem
	G	entamicin	_	Gentamicin, Tob	ramycin, /	Amikacin		Gent, Tobra, Ami	apres res m
					eonam			and a state of the	

Antibiotic Selection Considerations

- Suspected source of infection
- Likely pathogens
- Host factors, comorbidities
 - DM, HIV, splenectomy, neutropenia
- Concern for resistant organisms
 - community vs. nosocomial, nursing homes, previous hospitalization/antibiotics, colonization (MRSA, MDRO)
 - Use your antibiogram!

drug resistance

Which antibiotic to give FIRST?

- Differentials often involved both Gram-positive and Gram-negative organisms
- Gram-negative BSI with increased risk of early mortality
- β-lactam can be infused rapidly whereas vancomycin requires longer infusion
- Additional lines are preserved for fluids, vasopressors, or other medications

Which antibiotic to give FIRST?

Clinical Infectious Diseases

Administration of a β -Lactam Prior to Vancomycin as the First Dose of Antibiotic Therapy Improves Survival in Patients With Bloodstream Infections

Joe Amoah,¹ Eili Y. Klein,² Kathleen Chiotos,³ Sara E. Cosgrove,^{4,0} and Pranita D. Tamma¹; for the Centers for Disease Control and Prevention's Prevention Epicenters Program

¹Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; ²Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; ²Department of Anesthesia and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA; and ⁴Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA

- Observational study of patients
 13yo with a bacterial bloodstream infection admitted to any of the 5 hospitals in the Johns Hopkins Health System between 2016-2020
- Receipt of a β -lactam agent before vancomycin vs. vancomycin before a β -lactam agent based on timestamp of administration
- Primary outcome mortality within 7 days from the time of
 blood culture collection

Patient Population

Table 1. Mortality Associated With the Most Frequently Recovered Bacterial Organisms Causing Bloodstream Infections in a Cohort of 5514 Patients^{a,b,c}

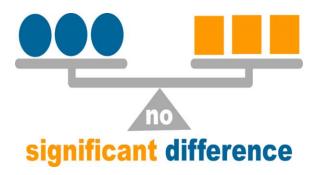
Organism	No. (%)	Mortality≤48 h	Mortality≤7 d	Mortality≤30 d
Gram-negative organisms	3658 (66.3)	102 (2.8)	256 (7.0)	614 (16.8)
Acinetobacter baumannii complex	104 (1.9)	7 (6.7)	17 (16.3)	31 (29.8)
Citrobacter freundii	142 (2.6)	3 (2.1)	5 (3.5)	13 (9.2)
Enterobacter cloacae complex	368 (6.7)	11 (3.0)	20 (5.4)	53 (14.4)
Escherichia coli	1148 (20.8)	14 (1.2)	41 (3.6)	158 (13.8)
Klebsiella aerogenes	148 (2.7)	5 (3.4)	13 (8.8)	30 (20.3)
Klebsiella oxytoca	172 (3.1)	14 (8.1)	17 (9.9)	40 (23.3)
Klebsiella pneumoniae	764 (13.9)	23 (3.0)	65 (8.5)	153 (20.0)
Proteus mirabilis	128 (2.3)	2 (1.6)	11 (8.6)	18 (14.1)
Pseudomonas aeruginosa	380 (6.9)	16 (4.2)	46 (12.1)	73 (19.2)
Serratia marcescens	168 (3.0)	5 (3.0)	16 (9.5)	25 (14.9)
Stenotrophomonas maltophilia	136 (2.5)	2 (1.5)	5 (3.7)	20 (14.7)
Gram-positive organisms	2476 (44.9)	84 (3.4)	162 (6.5)	295 (11.9)
Enterococcus faecalis	424 (7.7)	7 (1.7)	14 (3.3)	23 (5.4)
Enterococcus faecium	261 (4.7)	6 (2.3)	13 (5.0)	28 (10.7)
Methicillin-susceptible Staphylococcus aureus	715 (13.0)	35 (4.9)	69 (9.7)	121 (16.9)
Methicillin-resistant Staphylococcus aureus	524 (9.5)	14 (2.7)	29 (5.5)	60 (11.5)
Streptococcus anginosus	96 (1.7)	2 (2.1)	4 (4.2)	5 (5.2)
Streptococcus pneumoniae	160 (2.9)	4 (2.5)	8 (5)	16 (10)
Streptococcus agalactiae	164 (3.0)	5 (3.0)	9 (5.5)	15 (9.1)
Streptococcus pyogenes	132 (2.4)	11 (8.3)	16 (12.1)	27 (20.5)

The odds of 7d mortality reduced by 52%

Table 3. Univariable and Multivariable Analysis of Mortality at 7 Days for 3376 Patients Aged 13 Years and Older With Bloodstream Infections, Using an Inverse Probability of Treatment–Weighted Cohort Based on Propensity Scores

Variable	Unadjusted Odds of Mortality Within 7 d (95% CI)	<i>P</i> Value	Adjusted Odds of Mortality Within 7 d ^a (95% CI)	<i>P</i> Value
Gram-negative agent administered first	0.68 (.50–.92)	.013	0.48 (.33–.69)	<.001
Pitt bacteremia score	1.39 (1.33–1.47)	<.001	1.26 (1.17–1.37)	<.001
Highest lactate	1.28 (1.24–1.33)	<.001	1.28 (1.23-1.34)	<.001
Highest peripheral WBC count	1.00 (1.00–1.00)	.328	1.00 (1.00-1.00)	.273
Severe immunocompromise	0.83 (.53–1.30)	.412	1.18 (.69–2.03)	.544
Intensive care unit admission	3.38 (2.53-4.52)	<.001	1.30 (.88-1.92)	.188
Charlson comorbidity index	0.99 (.95–1.00)	.138	0.96 (.92-1.00)	.051
Active antibiotic therapy	1.47 (1.05–2.05)	.025	1.25 (.84–1.86)	.275
Combination gram-negative therapy	1.48 (.72–3.04)	.283	0.94 (.44–1.99)	.865

Abbreviations: CI, confidence interval; WBC, white blood cell.


^aDoubly robust analysis using the inverse probability of treatment-weighted cohort based on propensity scores, with additional adjustment for all covariates included in the table.

- SENTRY Antimicrobial Surveillance Program: 13,245 BSIs per year
- Prioritizing initial β -lactam administration has the potential to save $\underline{737}$ lives per year!

What about patients with MRSA bacteremia?

- MRSA BSI Subset: 524 patients
 - 380 (73%) received a β -lactam first
 - 144 (27%) received vancomycin first
- The aOR of 7d mortality for patients who received β-lactam prior to vancomycin was 0.93 (95% CI: 0.3 –2.6).

Sepsis care in 2022: Things that have not changed

- Early recognition still key
- Antibiotics are still important

Sepsis care in 2022 Things that are new:

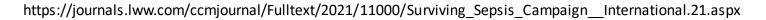
 Holding our horses in cases of hemodynamic stability + lower suspicion of infectious source

 Tailoring empiric antimicrobial therapy based on local resistance patterns

Bacteria	Nu									
	isolates tested (n)									
E. cloacae	192	65	77	66	79	96	85			
E. coli	1462	86	94	90	90	99	65			
K. pneumoniae	379*	78	80	79	86	97	81			
A. <u>baumannii</u>	117	63	61	57	69	73	66			
P. aeruginosa	928	65	73	71	88	76	44			
S. aureus	1178						44	41	100¥	10
E. faecalis	572								99	10
E. faecium	206								43	96

Whoa

Nelly!


Sepsis in September: Stay tuned for Dr. Laura Evans

ONLINE SPECIAL ARTICLE

Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2021

Evans, Laura¹; Rhodes, Andrew²; Alhazzani, Waleed³; Antonelli, Massimo⁴; Coopersmith, Craig M.⁵; French, Craig⁶; Marado, Flávia R.⁷; Mcintyre, Lauralyn⁸; Ostermann, Marlies⁹; Prescott, Hallie C.¹⁰; Schorr, Christa¹¹, Source Steven¹²; Wiersinga, W. Joost¹³; Alshamsi, Fayez¹⁴; Angus, Derek C.¹⁵; Arabi, Yaseen¹⁶; Azevedo, Lucian¹⁷; Beale, Richard¹⁸; Beilman, Gregory¹⁹; Belley-Cote, Emilie²⁰; Burry, Lisa²¹; Cecconi, Maurizio²²; Centofanti, John²³; Coz Yataco, Angel²⁴; De Waele, Jan²⁵; Dellinger, R. Phillip²⁶; Doi, Kent²⁷; Du, Bin²⁸; Estenssoro, Elisa²⁹; Ferrer, Ricard³⁰; Gomersall, Charles³¹; Hodgson, Carol³²; Hylander Møller, Morten³³; Iwashyna, Theodore³⁴; Jacob, Shevin³⁵; Kleinpell, Ruth³⁶; Klompas, Michael³⁷; Koh, Younsuck³⁸; Kumar, Anand³⁹; Kwizera, Arthur⁴⁰; Lobo, Suzana⁴¹; Masur, Henry⁴²; McGloughlin, Steven⁴³; Mehta, Sangeeta⁴⁴; Mehta, Yatin⁴⁵; Mer, Mervyn⁴⁶; Nunnally, Mark⁴⁷; Oczkowski, Simon⁴⁸; Osborn, Tiffany⁴⁹; Papathanassoglou, Elizabeth⁵⁰; Perner, Anders⁵¹; Puskarich, Michael⁵²; Roberts, Jason⁵³; Schweickert, William⁵⁴; Seckel, Maureen⁵⁵; Sevransky, Jonathan⁵⁶; Sprung, Charles L.⁵⁷; Welte, Tobias⁵⁸; Zimmerman, Janice⁵⁹; Levy, Mitchell⁶⁰

